
Projection and Division:
Linear-Space Verification of Firewalls

H. B. Acharya
The University of Texas at Austin

acharya @ cs.utexas.edu

M. G. Gouda
The National Science Foundation, and

The University of Texas at Austin
gouda @ cs.utexas.edu

Abstract—A firewall is a packet filter that is placed at the

entrance of a private network. It checks the header fields of

each incoming packet into the private network and decides,

based on the specified rules in the firewall, whether to accept

the packet and allow it to proceed, or to discard the packet.

A property of a firewall is a set of packets that the firewall is

required to accept or discard. Associated with each firewall is

a very large set of properties that the firewall needs to satisfy.

The space and time complexity of the best known deterministic

algorithm, for verifying that a given firewall satisfies a given

property, is O(nd), where n is the number of rules in the given

firewall and d is the number of fields checked by the firewall.

Usually, n is around 2000 and d is 5. In this paper, we propose

the first deterministic firewall verification algorithm whose space

complexity is O(nd), linear in both n and d. This algorithm

consists of three components: a projection pass, a division pass,

and a probe algorithm. We applied our verification algorithm to

over two million firewall-property pairs, varying n from 100 to

10000 and fixing d at 5. From this experiment, we observed that

the algorithm requires (900 + 0.5n) Kilobytes of storage and in

the order of 10 seconds execution time.

I. INTRODUCTION

A firewall is a packet filter that is placed at the point where
a private computer network connects to the rest of the Internet.
The firewall intercepts each packet that is exchanged between
the private network and the Internet, examines the fields of
the packet headers, and makes a decision to either accept the
packet and allow it to proceed, or discard the packet.

The decision that a firewall makes, when it receives a packet,
depends on

1) The values of the fields in the packet headers, and
2) The sequence of rules that is specified for the firewall

by the firewall designer.
Each firewall rule consists of a predicate and a decision,
which is either accept or discard. When the firewall receives
a packet, it searches its sequence of rules for the first rule,
whose predicate is satisfied by the values of the fields in the
packet headers, and then applies the decision of this rule to
the packet.

A discard property of a firewall F is a set of packets that
F is required to discard. (The majority of the discussion in
this paper focuses on discard properties of firewalls. Then in
Section VI below, we show that the discussion can be easily
extended to include accept properties as well.)

A firewall F is said to satisfy a discard property P iff F

does discard every packet in P .

A firewall verification algorithm is an algorithm that takes
as input a firewall F and a discard property P and produces
as output a determination of whether F satisfies P .

Firewall verification algorithms can be classified into two
classes: probabilistic and deterministic.

The time and space complexity of the best known proba-
bilistic firewall verification algorithm [1] are O(nd), where n

is the number of rules in the input firewall F and d is the
number of checked fields in F . Note that the value of n is
about 2000, and the value of d is about 5. The problem with
this probabilistic algorithm is that sometimes this algorithm
produces an incorrect output (even though the analysis of [1]
suggests that the probability of this algorithm producing an
incorrect output is very small).

The time and space complexity of the best known deter-
ministic firewall verification algorithm [8] are O(nd). Thus
the computational complexity of this algorithm is severe given
that the value of n is about 2000 and the value of d is about
5.

In this paper, we present the first deterministic firewall
verification algorithm whose space complexity is O(nd), linear
in both n and d. Unfortunately, the time complexity of this
algorithm is O(nd+1). However, our experimental results,
presented in Section VII, suggests that execution time of the
algorithm takes about 10 seconds.

Our firewall verification algorithm consists of three compo-
nents:

1) The projection pass
2) The division pass
3) The probe algorithm
When the projection pass is applied to any firewall F and

any discard property P , it computes a new firewall, called the
projection of F over P , and denoted F/P . The projection pass
also returns any one of three conclusions:

(a) F satisfies P .
(b) F does not satisfy P .
(c) No conclusion can be reached.
On one hand, if the projection pass returns conclusion (a) or

(b), then verifying whether F satisfies P is complete. On the
other hand, if the projection pass returns conclusion (c), then
we use the computed projection firewall F/P to determine
whether F satisfies P .

This determination is based on the following interesting

equivalence relation, which is discussed in Section III, between
F , P , and F/P :

Fact 1. F satisfies a discard property P

iff

F/P accepts no packets.

Therefore, to verify that F satisfies P , it is sufficient (and
necessary) to verify that F/P accepts no packet. The latter
can be done by applying the division pass to F/P .

When the division pass is applied to the projection firewall
F/P , it divides F/P into a set of smaller firewalls called the
accept slices of F/P . The following interesting equivalence
relation between F/P and its accept slices is discussed in
Section IV.

Fact 2. F/P accepts no packet

iff

every accept slice of F/P accepts no packet.

From Facts 1 and 2, we conclude that in order to verify that
F satisfies a discard property P , it is sufficient (and necessary)
to verify that every accept slice of F/P accepts no packet.
This can be done by applying the probe algorithm, presented
in Section V, to every accept slice of the projection firewall
F/P .

When the probe algorithm is applied to an accept slice AS

of F/P , it uses AS to generate a relatively small number of
packets called probe packets of AS and proceeds to check
whether AS accepts anyone of these generated probes. If AS

accepts no probe packet, then we conclude that AS accepts
no packet, thanks to the following equivalence relation, which
is shown to hold in Section V, between packets and probe
packets.

Fact 3. An accept slice AS of F/P accepts no packet

iff

AS accepts no probe packet.

The space complexity of each of these three components
(namely the projection pass, the division pass, and the probe
algorithm) is O(nd), where n is the number of rules in firewall
F and d is the number of fields checked in F . And because
these three components constitute our firewall verification
algorithm, the space complexity of our firewall verification
algorithm is O(nd), linear in both n and d.

II. PACKETS, FIREWALLS AND PROPERTIES

In this section, we define the main terms in this paper: fields,
rules, packets, firewalls, and discard properties.

A field is a variable whose value is taken from a nonempty
interval of non-negative integers called the domain of the
field. In this paper, we assume that there are d fields, named
f1, .., fd, in the headers of each packet. (Examples of these
fields are the source IP address, the destination IP address, the
transport protocol, the source port number, and the destination
port number.) The domain of each field fj is denoted D(fj).

A rule r is of the form

r :f1 2 X1 ^ .. ^ fd 2 Xd !< decision >

Note that r is the name of the rule, each fj is a field, each Xj

is a nonempty interval of nonnegative integers taken from the
domain D(fj) of field fj , and < decision > is either accept
or discard.

A rule whose decision is accept (or discard, respectively) is
called an accept rule (or discard rule, respectively).

A packet is a tuple (p1, .., pd) of d nonnegative integers,
where each integer pj is taken from the domain D(fj) of
field fj .

A packet (p1, .., pd) is said to match a rule r of the form

r :f1 2 X1 ^ .. ^ fd 2 Xd !< decision >

iff the predicate (p1 2 X1 ^ .. ^ pd 2 Xd) is true.
A firewall is a sequence of rules.
A packet is said to match a firewall F iff the packet matches

at least one rule in F .
A firewall F is called complete iff every packet matches F .
A firewall F is said to accept (or discard, respectively) a

packet iff F has an accept (or discard, respectively) rule r

such that the following two conditions hold:
1) The packet matches r

2) The packet does not match any rule that precedes r in
F

Note that for any given firewall F and any given packet,
exactly one of the following three statements holds:

(a) F accepts the packet
(b) F discards the packet
(c) The packet does not match F

A discard property P has the same form as a discard rule
in a firewall:

P :f1 2 Z1 ^ .. ^ fd 2 Zd ! discard

Note that P is the name of the property, each fj is a field, and
each Zj is a nonempty interval of nonnegative integers taken
from the domain D(fj) of field fj .

A packet (p1, .., pd) is said to match a discard property P

of the form:

P :f1 2 Z1 ^ .. ^ fd 2 Zd ! discard

iff the predicate (p1 2 Z1 ^ .. ^ pd 2 Zd) is true.
A firewall F is said to satisfy a discard property P iff every

packet that matches P is discarded by F .
In this paper, we present an algorithm that takes as input a

complete firewall F and a discard property P and determines,
as output, whether or not F satisfies P . The time complexity of
this algorithm is O(nd+1) and its space complexity is O(nd),
where n is the number of rules in firewall F and d is the
number of fields that are checked in each rule in F . Note that
the space complexity of this algorithm is linear in both n and
d. In practice, the value of n is about 2000 and the value of
d is usually 5.

As mentioned in the Introduction, our firewall verification
algorithm consists of three components:

1) The projection pass, described in Section III
2) The division pass, described in Section IV

3) The probe algorithm, described in section V
We are now ready to discuss these three components of our

firewall verification algorithm in order.

III. THE PROJECTION PASS

The first step to verify whether a complete firewall F

satisfies a discard property P is to apply an algorithm, called
the projection pass, to both F and P . The projection pass is
presented in this section. As discussed below, this algorithm
performs two tasks. First, it uses F and P to compute a new
firewall, usually smaller than F , called the projection of F

over P and denoted F/P . Second, it produces any one of
three conclusions:

(a) F satisfies P

(b) F does not satisfy P

(c) No conclusion can be reached.
If the produced conclusion is either (a) or (b), then the

verification task is complete. But if the produced conclusion
is (c), then we use the projection firewall F/P to answer the
question of whether F satisfies P since, as we show below,
F satisfies P iff F/P accepts no packets.

Before we can present the projection pass, we need first to
introduce three new concepts:

• A firewall rule overlapping a discard property
• The projection of a firewall rule over a discard property
• A firewall rule covering a discard property
Let r be a firewall rule, and P be a discard property:

r :f1 2 X1 ^ .. ^ fd 2 Xd !< decision of r >

P :f1 2 Z1 ^ .. ^ fd 2 Zd ! discard

Rule r is said to overlap property P iff every intersection
of an interval Xj in r with the corresponding interval Zj in
P is nonempty.

If rule r overlaps property P , then define the projection of
r over P , denoted r/P , as the following rule:

r/P : f1 2 (X1 \ Z1) ^ .. ^ fd 2 (Xd \ Zd) !< decision of r >

Note that if rule r does not overlap property P , then at least
one of the intersections (Xj \Zj) is empty and so r/P is not
a firewall rule.

Rule r is said to cover property P iff each interval Xj in
r is a superset of the corresponding interval Zj in P .

The projection pass is presented in Algorithm 1. Note that
the time and space complexity of this pass is O(nd), where n

is the number of rules in firewall F , and d is the number of
fields checked in every rule.

The following equivalence relation holds between a com-
plete firewall F , a discard property P , and the projection
firewall F/P that is produced by applying the projection pass
to F and P .

Theorem 1. A complete firewall F satisfies a discard property

P iff the projection firewall F/P accepts no packet.

It follows from Theorem 1 that to verify that F satisfies P ,
it is sufficient to verify that F/P accepts no packets.

Algorithm 1 Projection Pass
Input: A complete firewall F and a discard property P .
Output: A firewall F/P , called the projection of F over P ,

and any one of three conclusions:
(a) F satisfies P

(b) F does not satisfy P

(c) No conclusion can be reached
F/P := empty firewall
for each rule r in F do

if r overlaps P then

Add the rule r/P at the tail of firewall F/P

end if

if r covers P then

exit loop
end if

end for

if each rule in F/P is a discard rule then

Terminate and declare that F satisfies P

end if

if the first rule in F/P is an accept rule then

Terminate and declare that F does not satisfy P

else

Declare that no conclusion can be reached
Terminate and return F/P

end if

IV. THE DIVISION PASS

We verify that a projection firewall F/P accepts no packets
in two steps. First, we apply an algorithm, called the division
pass, to F/P to divide F/P into a set of smaller firewalls,
called the accept slices of F/P . Second, we apply an algo-
rithm, called the probe algorithm, to every accept slice of F/P

to show that every slice accepts no packets. The correctness of
this method is based on Theorem 2 (below) which states that
F/P accepts no packet iff every accept slice of F/P accepts
no packet. The division pass is presented in this section and
the probe algorithm is presented in the next section.

But before we can present the division pass, we need first
to introduce three new concepts:

• A firewall rule overlapping another firewall rule
• The projection of a firewall rule over another firewall rule
• A firewall rule covering another firewall rule

Let r and s be two firewall rules:

r :f1 2 X1 ^ .. ^ fd 2 Xd !< decision of r >

s :f1 2 Y1 ^ .. ^ fd 2 Yd !< decision of s >

Rule r is said to overlap rule s iff every intersection of an
interval Xj in r with the corresponding interval Yj in s is
nonempty.

If rule r overlaps rule s, then define the projection of r over
s, denoted r/s, and the projection of s over r, denoted s/r,

as the following two rules:

r/s :f1 2 (X1 \ Y1) ^ .. ^ fd 2 (Xd \ Yd) !< decision of r >

s/r :f1 2 (X1 \ Y1) ^ .. ^ fd 2 (Xd \ Yd) !< decision of s >

Rule r is said to cover rule s iff each interval Xj in r is a
superset of the corresponding interval Yj in s.

The division pass is presented in Algorithm 2. Note that the
time and space complexity of this pass is O(nd), where n is
the number of rules in firewall G and d is the number of fields
checked in every rule.

Algorithm 2 Division Pass
Input: A firewall G.
Output: A set of firewalls { AS1, . . . , ASk } where each ASi

is called an accept slice of G and k is the number of accept
rules in G.
{Each ASi is computed from G as follows:
ASi := the sequence of all discard rules the precede the i-th
accept rule in G, followed by the i-th accept rule in G}
for each discard rule dr in ASi do

if dr overlaps the accept rule ar in ASi then

Replace dr by dr/ar in ASi

else

Remove dr from ASi

end if

if dr covers the accept rule ar in ASi then

Remove the accept rule ar from ASi

Exit loop
end if

end for

Note that each accept slice, that is computed by the division
pass, consists of zero or more discard rules followed by zero
or one accept rule.

The following equivalence relation holds between any fire-
wall G and the accept slices, computed by the division pass,
of G.

Theorem 2. A firewall G accepts no packet iff every accept

slice of G accepts no packet.

From Theorems 1 and 2, to verify that a firewall F satisfies
a discard property P , it is sufficient to verify that every accept
slice of the projection firewall F/P accepts no packet.

V. THE PROBE ALGORITHM

In this section, we present an algorithm, called the probe
algorithm, that can be applied to an accept slice AS (of
some projection firewall) and determine whether AS accepts
no packet. The idea of this algorithm is to identify a small
set of packets, called probe packets, and check whether AS

accepts no probe packet. We show in Theorem 3 below that
AS accepts no packet iff it accepts no probe packet. Next, we
introduce the two concepts of probe packets and probe value.

A packet (p1, . . . , pd) is called a probe packet of an accept
slice AS (of some projection firewall) iff each integer pj in the

packet either equals (b + 1), where some discard rule in AS

has a conjunct of the form ”fj 2 [a, b]”, or equals (a), where
the accept rule in AS has a conjunct of the form ”fj 2 [a, b]”.

Each integer pj in a probe packet (p1, . . . , pd) is called a
probe value.

The probe algorithm is presented in Algorithm 3.

Algorithm 3 Probe
Input: An accept slice AS of a projection firewall F/P .
Output: A determination of whether AS accepts no packets.

if AS has some discard rules but no accept rule then

Terminate and declare that AS accepts no packets.
end if

if AS has no discard rules and one accept rule then

Terminate and declare that AS accepts at least one packet.
end if

{In all other cases, AS has some discard rules and one
accept rule.}
for each field fj do

{Compute set Sj of probe values of fj as follows:}
Sj := {}
for for each discard rule r in AS do

if the predicate of r has the conjunct fj 2 [a, b] then

Sj := Sj [{b + 1}
end if

end for

if the predicate of the accept rule in AS has the conjunct
fj 2 [a, b] then

Sj := Sj [{a}
end if

end for

Compute set S of all probe packets as the Cartesian product
S1 ⇥ S2 ⇥ . . .⇥ Sd

if no probe packet in S is accepted by AS then

Terminate and declare that AS accepts no packets
else

Terminate and declare that AS accepts at least one packet
end if

Correctness of the probe algorithm is based on the following
theorem.

Theorem 3. Let AS be an accept slice (of some projection

firewall) that consists of some discard rules followed by one

accept rule. AS accepts no packet iff AS accepts no probe

packet.

In practice, when we implement the probe algorithm we
do not generate and store set S of all probe packets, because
this set has O(nd) packets in the worst case. Instead, we use
nested loops to traverse the d sets S1, S2...Sd and generate
the probe packets, one by one, and check whether each
generated packet is accepted by AS before generating the
next packet. This modification does not affect the correctness
of the algorithm, but reduces the space required from O(nd)
to O(nd). Unfortunately, the time complexity of the probe
algorithm is O(nd).

VI. VERIFYING ACCEPT PROPERTIES

In Sections III, IV, and V, we presented the three com-
ponents of of an algorithm for verifying whether a firewall
F satisfies a discard property P . This presentation can be
extended in a straightforward manner to verifying whether
a firewall F satisfies an accept property P . The extension
consists of replacing each occurrence of “discard” with an
occurrence of “accept” and vice versa.

For example, Theorems 1, 2, and 3 (above), that can be used
to verify discard properties, can be extended to Theorems 4,
5, and 6 (below), that can be used to verify accept properties.

Theorem 4. A firewall F satisfies an accept property P iff

the projection firewall F/P discards no packet.

Theorem 5. A firewall G discards no packet iff every discard

slice of G discards no packet.

Theorem 6. Let DS be a discard slice (of some projection

firewall) that consists of some accept rules followed by one

discard rule. DS discards no packet iff DS discards no probe

packet.

VII. EXPERIMENTAL RESULTS

It is easy to see that the asymptotic space complexity of our
algorithm is linear in n (and d). However, the probe algorithm
requires that a slice be tested against a large number of packets.
A slice may require O(nd) probe packets in the worst case, and
there may be up to O(n) slices. Thus, the time complexity of
the algorithm is O(nd+1), which is pseudo-polynomial. There
are several natural questions about the algorithm:

• Does the linear space requirement hold in practice?
• Is the algorithm fast enough that it can be used for

practical verification of firewalls?
• Does the algorithm scale well if we employ it to verify

large firewalls?

In this section, we demonstrate that the answer to all these
questions is “yes”.

A. Experiment 1

In this experiment, we generate firewalls with n rules each,
where n is varied from 100 to 10000 in steps of 100. d

has the standard value 5. For each value of n, we generate
100 random firewalls, and for each firewall, we verify 100
randomly generated properties. We thus verify one million
firewall-property pairs using our algorithm.

The maximum observed space requirements for this algo-
rithm are shown in Figure 1.

The space consumption is not only linear, as expected, it
also grows very slowly at a steady rate of 40 � 50 kilobytes
per 100 rules. We suggest that under the conditions of our
experiment, an upper bound for the memory consumption is
900 + 0.5n kilobytes.

Rules Time (sec.)
9800 18.3
10000 18.2
9900 18.1
9500 17.6
9400 17.0

TABLE I
FIVE LONGEST RUNNING TIMES (SECONDS)

B. Experiment 2

In this experiment, we again verify one million firewall-
property pairs (as in Experiment 1), and note the running time
required by our algorithm.

The execution time of our complete algorithm, consisting of
the projection pass, the division pass, and the probe algorithm,
are presented in Figure 2. We give both the average and the
maximum execution time observed for firewalls of a given
length.

The speed of the algorithm enables us to verify a very
large number of firewall-property pairs, so the graph shows
a clear trend. The worst-case running time is a very modest
18.3 seconds. Indeed, for firewalls of length up to 2000, which
is a good bound for practical firewalls, the worst-case time is
0.71 seconds.

Table I shows the speed of our algorithm. As expected,
the worst execution times were for large firewalls with close
to 10, 000 rules. However, even in these pathological cases,
our algorithm had an execution time of the order of 10
seconds. It may be noted that all experiments were run on
a 3.06 GHz processor, using only one core; as the algorithm
requires probing of many slices, which are independent tasks,
it is simple to further speed up its execution using a parallel
computer. Furthermore, our implementation of the algorithm
is an interpreted script; an efficient compiled version in C/C++
should also improve performance considerably.

From the two million firewall-property pairs we verify in
Experiments 1 and 2, we can say with high confidence that
despite the pseudo-polynomial running time, in practice our
algorithm takes very little time to complete, and is suitable
for practical firewall verification.

C. Experiment 3

In this experiment, we attempted to measure whether our
algorithm scales well with the size of the problem instance.
Our experiment involved “torture testing” the algorithm with
extremely large inputs, two or three orders of magnitude larger
than practical firewalls. Our results remained positive.

For 100 firewall-property pairs (10 firewalls and 10 random
properties each) where the firewall length was 100000, the
space required was 44 MB, as opposed to the 50MB predicted
by our bound. The mean time was 66.5 seconds and the
maximum time 842 seconds - about 14 minutes.

Fig. 1. Results of Experiment 1.

Fig. 2. Results of Experiment 2.

For 100 (again 10 ⇥ 10) firewall-property pairs with one
million rules, the mean time was 2647 seconds (approx. 44
minutes), and the maximum time 66261 seconds (⇡ 18.5
hours), but the maximum memory consumption was a very
reasonable 436MB - considerably less than the 500MB sug-
gested by the bound.

VIII. RELATED WORK

Firewalls are a critical component of network security, so it
is natural that there has been considerable research attacking
the problem of how to ensure a firewall is truly secure. In
this section, we briefly discuss the previous approaches to the
problem of ensuring firewall correctness.

1) Firewall Testing: To test a given firewall F , one
generates packets for which the “expected” decisions of
F , accept or discard, are known a priori. The generated
packets are then sent to F , and the actual decisions
of F for these packets are observed. If the expected
decision for each generated packet is the same as the
actual decision for the packet, one concludes that the
given firewall F is probably correct. Otherwise, the
given firewall F has errors. Al-Shaer et al. provide a
complete framework to generate targeted packets and
obtain good coverage in testing in [3].

2) Firewall Analysis: A firewall may have various kinds of
defects: vulnerabilities, conflicts, anomalies, and redun-
dancies. Firewall analysis refers to the use of algorithms
to identify these defects in a given firewall F .
The concept of conflicts between rules in a firewall
is due to [5] and [2]. A classification of anomalies,
as well as algorithms to detect them, is presented in
[4].A framework for understanding the vulnerabilities
in a single firewall is outlined in [6], and an analy-
sis of these vulnerabilities presented in [9]. [13] is a
quantitative study of configuration errors for a firewall.
An example of an efficient firewall analysis algorithm is
given in FIREMAN [14]. An integrated analysis engine
for firewalls in a network is given in Fang [12].

3) Firewall Verification: A verification algorithm takes a
firewall F and a property R, and determines whether or
not the firewall F satisfies the property R. The question
of how to query a given firewall and obtain the answer
(whether or not it satisfies a given property) is discussed
in [12] and [11].

4) Firewall Design: To ensure a firewall does not have vul-
nerabilities or other problems, it can be designed from
the outset using structured algorithms. Such algorithms,
that can generate a firewall from its specification, are
provided in [7] and [10].

The algorithm presented in this paper is a firewall veri-
fication algorithm, and belongs in group 3 of the types of
algorithm presented above. It is, in fact, the most efficient
firewall verification algorithm known.

IX. CONCLUSION

This paper addresses the important practical problem of
verifying whether a given firewall satisfies a property. Current
deterministic algorithms that solve this problem have time and
space complexity of O(nd). In contrast, our approach takes
only O(nd) space, which, being the size of the given firewall,
is clearly a lower bound on the space complexity. However, our
worst-case running time is O(nd+1). By verifying millions of
firewall-property pairs, we show that in spite of the worst-case
pseudo-polynomial running time, the algorithm is fast enough
to use for practical firewall verification.

In this paper, we make three new contributions. Our first
contribution is a technique which we call firewall projection,
which prunes a given firewall F down to a smaller firewall
F/P using the given property P . F/P consists of the portion
of F that interacts with packets that match property P , so
F/P satisfies P iff F satisfies P .

Our next contribution, firewall division, divides the firewall
F/P into multiple smaller firewalls which we call “slices”.
F/P satisfies P iff every slice satisfies P .

The final contribution of this paper is the probe algorithm,
a new verification algorithm that takes as input a slice F and a
property P , and decides whether F satisfies P . This algorithm
takes only O(nd) space; the worst-case time is O(nd+1).
While the theoretical worst-case running time seems to be
large, we have extensively demonstrated that the algorithm is
in fact very usable for practical firewalls. (In the worst case,
it still terminates in less than a second for firewalls of 2000
rules. The average time for such a firewall is 40 milliseconds.)

At the moment, this work deals with single firewalls only,
but it can be generalized to any case where a policy is
expressed as a list of rules with first-match semantics. We
can also use this algorithm in conjunction with the techniques
described in [8] in order to verify enterprise networks with
tens or even hundreds of firewalls. We suggest that exploring
whether our algorithm is useful in other domains - such as
verifying access control lists in general - may be an interesting
area for further research.

It is also noteworthy that verifying whether a given firewall
satisfies a given property can be used as a basic step in
performing other tasks - for instance, checking whether a
particular rule in a given firewall is redundant. We believe
that our algorithm may be useful for developing an efficient
redundancy-detection algorithm, and will attempt to develop
a solution to this problem in our future work.

REFERENCES

[1] H. B. Acharya and M. G. Gouda. Linear-time verification of firewalls.
In Proceedings of the International Conference on Network Protocols,
2009.

[2] H. Adiseshu, S. Suri, and G. M. Parulkar. Detecting and resolving packet
filter conflicts. In INFOCOM, pages 1203–1212, 2000.

[3] E. S. Al-Shaer, A. El-Atawy, and T. Samak. Automated pseudo-live
testing of firewall configuration enforcement. IEEE Journal on Selected

Areas in Communications, 27(3):302–314, 2009.
[4] E. S. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict

classification and analysis of distributed firewall policies. IEEE Journal

on Selected Areas in Communications, 23(10):2069–2084, 2005.

[5] D. Eppstein and S. Muthukrishnan. Internet packet filter management
and rectangle geometry. In SODA, pages 827–835, 2001.

[6] M. Frantzen, F. Kerschbaum, E. E. Schultz, and S. Fahmy. A framework
for understanding vulnerabilities in firewalls using a dataflow model of
firewall internals. Computers & Security, 20(3):263–270, 2001.

[7] M. G. Gouda and A. X. Liu. Strucured firewall design. Computer

Networks, 51:1106–1120, 2007.
[8] M. G. Gouda, A. X. Liu, and M. Jafry. Verification of distributed fire-

walls. In Proceedings of the IEEE Global Communications Conference

(GLOBECOM), 2008.
[9] S. Kamara, S. Fahmy, E. E. Schultz, F. Kerschbaum, and M. Frantzen.

Analysis of vulnerabilities in internet firewalls. Computers & Security,
22(3):214–232, 2003.

[10] A. X. Liu and M. G. Gouda. Diverse firewall design. IEEE Transaction

on Parallel and Distributed Systems, 19(9):1237–1251, 2008.
[11] A. X. Liu and M. G. Gouda. Firewall policy queries. IEEE Transactions

on Parallel and Distributed Systems, 20(6):766–777, 2009.
[12] A. J. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine.

In IEEE Symposium on Security and Privacy, pages 177–187, 2000.
[13] A. Wool. A quantitative study of firewall configuration errors. IEEE

Computer, 37(6):62–67, 2004.
[14] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra.

Fireman: A toolkit for firewall modeling and analysis. Security and

Privacy, IEEE Symposium on, 0:199–213, 2006.

View publication stats

https://www.researchgate.net/publication/221459924

