
Rules in Play: On the Complexity of Routing
Tables and Firewalls

H. B. Acharya, Satyam Kumar, Mohit Wadhwa, and Ayush Shah
IIIT Delhi

Email: acharya@iiitd.ac.in

Abstract—Networking infrastructure, such as routers and fire-
walls, consist of a policy (i.e., where to forward which packets)
and a mechanism that implements it. As the correctness of the
policy is critical, it is a natural candidate for formal verification.
Indeed, several verification algorithms have been developed, that
detect anomalies, conflicts, and redundancies in practical firewalls
and flow tables. However, theory suggests that the problem is
intractable in general: the decision tree for a policy is of size
O((2n)d), where n is the number of rules and d is the number
of observed features used in making the decision. (In a typical
firewall, n = 1000 and d = 10.)

In this paper, we show why the verification of practical
firewalls is not as hard as previously thought. Using a new
concept, “rules in play,” we find a new, tight bound on the size of
the decision tree, and suggest three other factors - narrow fields,
singletons, and all-matches - that make the problem tractable in
practice. We also present an algorithm to solve an open problem:
pruning a policy to the minimum possible number of rules,
without changing its meaning.

I. INTRODUCTION

In packet-switched networks, packets are routed or filtered

at each hop according to the policy in a router or middlebox.

(Such policies are called flow tables, routing tables, firewall

rulesets, etc.) As the rules in a policy can interfere with each

other, the complexity of a policy is not simply described by

the number of rules. We propose to measure the complexity

of a policy by the size complexity of its decision tree.

How complex is a policy in general, and how should it be

stored for fast processing of packets? This is an important and

well studied question; several groups have proposed optimized

representations for policies, using tries [1], lookup tables [2],

B-trees [3], or skip lists [4]. However, the question remains

whether it is practical to use such representations, or real

policies are too complex. Following Liu [5], we know that the

theoretical worst-case complexity of a policy (measured by the

size complexity of its decision tree) is (2n−1)d, where n is the

number of rules and d is the number of fields, i.e. features of

interest. In other words, for a typical policy, where n is several

thousand and d is 5− 10, the decision tree is intractably large

(in the worst case); no accurate representation of the policy

can be both small and fast. But in sharp contradiction to this

negative result, other groups have successfully built decision

trees, and used them to analyze policies for entire networks

[6]!

The natural question that follows is, are the algorithms

in fact intractable (and we have just been lucky in practical

experiments), or is the theory overly conservative? The first

contribution of this paper is a closer look at this question. By

a minimal extension to decision diagrams, to keep track of

“rules in play”, we refine the known upper bound on decision

diagram size: the decision diagram for a policy of n rules

and d fields is tightly upper bounded by the Delannoy number

D(n−1, d). We also suggest how the mathematical modeling

of policies can be improved, by taking into account some

new metrics of policy complexity. Further, we indicate that

“friendly” values of these metrics may explain why decision-

diagram algorithms have proven tractable in practice.

Our first contribution is, therefore, to the theoretical analysis

of policies - the study of anomalies [7], inter-rule conflicts [8],

redundancies, and so on. For example, Frantzen [9] provides a

framework for understanding the vulnerabilities in a firewall,

and Blowtorch [10] is a framework to generate packets for

testing. These algorithms depend on the complexity of a policy,

as measured by the size of its decision diagram; our work

suggests why they are practical to use.

Our study of extended decision diagrams has also produced

an unexpected side benefit: the first algorithm to prune redun-

dant rules and produce a true minimum policy, i.e. the smallest

policy with the same semantics as the original. Current state

of the art algorithms [11] [12] only produce minimal policies,

by trimming redundant rules until no more can be found. In

practice, high-throughput systems, such as backbone routers,

use special hardware - ternary content addressable memory

[12], pipelining systems [13], etc. - which are not only expen-

sive, but limited in the size of policies they can accommodate.

Therefore, there is active research on algorithms to shrink

policies [12]; if our algorithm can be scaled to large policies, it

will also be a contribution to the use of accelerators in packet

resolution.

We begin by providing our definitions and concepts in the

next section, and also discuss our new metrics, the decision

diagram construction algorithm, and rules in play. After this,

we devote one section each to show a tight bound on the

size of decision diagrams, and to demonstrate how mitigating

factors - narrow fields, singletons, and all-matches - can

reduce the size of decision diagrams in practice. We then

present our redundancy removal algorithm, LeafTrim, and our

experimental results. We end with a few concluding remarks.

II. TERMS AND CONCEPTS

In this section, we define the terms and concepts used in

the paper, such as policies and properties; our new metrics,

2016 IEEE 24th International Conference on Network Protocols (ICNP)

1
978-1-5090-3281-5/16/$31.00 ©2016 IEEE

oneprob, allprob, and fieldwidth; and discuss decision dia-

grams and “rules in play”.

A. Packets, Rules, and Matching

In our work, we model a packet as a d-tuple of non-negative

integers. Why this model? In order to decide what to do with

a packet (whether to forward it, which interface to forward it

on, etc.), routers and firewalls examine its various attributes -

usually values in the packet header, such as source address,

destination address, source port, destination port, protocol, and

so on. (In ‘deep packet inspection’, attributes from the packet

payload are also checked.) The d fields of our packet model

represent the d features examined.

A rule represents a single rule in a flow table. It consists of

two parts: a predicate and a decision.

The rule predicate is of the form

x1 ∈ [x1,1, x1,2] ∧ x2 ∈ [x2,1, x2,2] . . . xd ∈ [xd,1, xd,2]

where each interval [xk,1, xk,2] is an interval of non negative

integers, drawn from the domain of field k. (For example,

suppose the third field in packets and rules represents source

IP address. In IPv4, the domain of this field is [0, 232 − 1].
Then, in any rule, 0 ≤ x3,1 ≤ x3,2 ≤ 232 − 1.)

The decision is an action, such as (in a firewall) accept or

discard. [We call a rule with decision accept an “accept rule”,

and a rule with decision discard a “discard rule”.]

A packet that satisfies the predicate of a rule is said to match
the rule. For example, the packet (1, 26, 7) clearly matches the

rule

x1 ∈ [0, 108] ∧ x2 ∈ [21, 65535] ∧ x3 ∈ [7, 616] → accept

B. Policies and Packet Resolution

A policy consists of multiple rules, as defined above, and a

specification of precedence - i.e. some way to decide which

action to execute, if multiple rules match a given packet. There

are two methods in use to decide the precedence of matching

rules.

1) First Match. The rules are arranged in sequence in the

policy, and the action of the first rule in the sequence

that is matched by a packet is the action executed.

This is the method usually used in firewalls.

2) Best Match. One specific field is chosen; out of the rules

matched by the packet, the one that specified the smallest

interval for this particular field, wins.

This is the method used in routing tables - longest

prefix matching on the destination IP. (In routing tables,

IP address intervals are usually denoted by prefixes,

e.g., 100.150.200.0 − 100.150.200.255, which is re-

ally the interval [1687603200, 1687603455], is written

100.150.200.0/24. Out of the rules matched by the

packet, the one with the longest prefix is chosen.)

In practice, precedence in a router is quite complicated:

1) First, find the best match.

2) In case of conflict, choose rules in the order:

a) Static routes

b) Dynamic routes, in order

(usually EIGRP, OSPF, ISIS, RIP)

c) Default route

3) If no rule matches, discard the packet.

However, this entire procedure can be effectively reduced

to first match, simply by ordering the rules (with prefix length

as the primary sort key, and the rule type as the secondary

key). Hence, in our work, we assume first match semantics

for policies.

The ‘winning’ rule, the decision of which is implemented

for a packet, is said to resolve the packet.

C. OneProb, AllProb, and FieldWidth

This paper focuses on the complexity of policies, as mea-

sured by the size of their decision diagrams (as explained in

the next subsection). Naturally, the question arises what factors

influence the complexity of a policy. The current literature

mentions two factors: n, the number of rules in the policy

(up to several thousand), and d, the number of fields in a

rule (usually 5 − 10). However, we suggest that we can get

a better sense of the complexity of a policy if we introduce

some additional metrics, as follows.

In practice, a rule is almost always very specific - it blocks a

particular IP, or allows access to a single port, etc. As a result,

most rules have one or two fields of interest set to a single

value, and the others set to “All” - i.e. the entire domain of the

field. Policies where many fields are set to single values, or to

All, show significantly different behavior [14]. The proportion

of don’t-cares (all-matches) and single values in a policy is

captured by the metrics allprob and oneprob.
For example, consider the policy

x1 ∈ [1, 100] ∧ x2 ∈ [1, 1] → accept

x1 ∈ [5, 5] ∧ x2 ∈ [3, 3] → discard

x1 ∈ [25, 50] ∧ x2 ∈ [1, 50] → discard

x1 ∈ [10, 10] ∧ x2 ∈ [5, 10] → accept

The domain of x1 is [1, 100] and of x2 is [1, 50]. We note

that in this ruleset, there are eight fields - two fields each in

four rules - and two of these fields, x1 in the first rule and

x2 in the third rule, are set to “All”. Hence, for this ruleset,

allprob = 2
8 = 0.25. Similarly, oneprob = 0.5.

Our second observation is that the domains of different

fields are of different sizes. For example, IPv4 addresses take

32 bits, protocol takes 8 bits, and version takes 4 bits in a

standard header. Narrow fields, whose domain is expressed in

a small number of bits, affect the policy very differently than

other (“wide”) fields, as discussed in Section IV. We suggest

that only wide fields be counted in d, and narrow fields be

represented instead by fieldwidth, the total number of bits

needed to express all the narrow fields in the policy.

D. Decision Diagrams

A decision diagram is an acyclic, rooted digraph, and a

simple DFA representation of a policy. Every non-terminal

node, i.e. node with outgoing edges, is marked with the name

2

2016 IEEE 24th International Conference on Network Protocols (ICNP)

2

of a field, fi. Every edge starts at a non-terminal node (say fi),
and is marked with an interval of values, e.g. [20, 110], called

the label of the edge; the label indicates that, for a packet

whose fi lies in this interval, this edge is to be taken. Every

terminal node, i.e. one with no outgoing edges, is marked

with a decision. (For example, in case of firewalls, decisions

are accept or discard, which we will henceforth represent as

1 and 0.)

For any packet p = (p.f1, ..p.fd) resolved by the policy,

there is exactly one path from the root corresponding to the

field values of p. This path terminates in a terminal node; the

decision at this node is the decision of the policy for p.

The new concept we add to decision diagrams is rules in
play. Essentially, a rule R is in play at a node if one or more

packets, that match R, can reach the node (on their path from

the root to a leaf node). A rule is in play along an edge if it

is in play at the target node of the edge. At the root, all rules

are in play; while traveling from the root to a leaf, the set of

rules in play becomes smaller, as rules are eliminated by the

choices at nodes; and finally, the first rule still in play at the

terminal node “wins”, i.e. determines the decision taken.

As decision diagrams are much easier to understand from

an example, We present the algorithm in Figure 1, and

demonstrate it in Figure 2 with the example policy

x ∈ [10, 110] ∧ y ∈ [90, 190] → 0

x ∈ [20, 120] ∧ y ∈ [80, 180] → 1

We wish to note two points:

1) As we are concerned with complexity, the question

immediately follows - time or space complexity? The

answer is, both, as policy verification can have a time

complexity equal to the space complexity of the decision

diagram. (In the worst case, a policy can specify all

possible packets, and make it necessary to check paths

from the root to every terminal node.)

2) It is not difficult to annotate a decision diagram with

rules in play at each node. In fact, with some minimal

changes, the algorithm for generating decision diagrams

can be made to output an annotated diagram.

III. THE SIZE OF DECISION DIAGRAMS

In this section, we present our study of the (worst-case) size

of a policy decision diagram, measured as the number of leaf

nodes of the diagram. We begin with the existing upper bound,

O((2n)d).
The intuition behind the bound is that, as the decision

diagram is a tree of fixed depth, its size is maximized by

making the branching factor of each node as large as possible.

As there are n rules in the policy, there can be a maximum of

2n−1 outgoing edges for a node. (Each edge must be labeled

with at least one interval. The n rules have 2n end points -

each interval has a start and an end. These 2n end points thus

divide the domain into a maximum of 2n−1 intervals. Hence

we can have at most 2n− 1 edges from a node.)

Fig. 1: Building annotated decision diagram from policy

procedure ADDNEWRULE(Rule R, name R.name, node x)
Add R.name to list of rules in play at x
if x is a terminal node then

Label x with the decision of R.
else

i is the field of node x.
R.i is the interval for field i in R.
x.i1, x.i2.. are the values on the edges from node x.
Build new paths from x, starting with new outgoing edges

labeled with the intervals in R.i− {x.i1, x.i2..}. � To each edge,
add new nodes and edge labels as per remaining fields in R. The
terminal node has decision of R. These nodes start with only one
rule in play, i.e. R.name.

for all labels x.ik do
if x.ik ∩R.i is empty then

continue
else

y is the target of edge labeled x.ik.
for every interval x.inew ∈ x.ik −R.i do

Copy (subgraph rooted at y).
y′ is the new copy of y itself.
Add edge x → y′, labeled x.inew.

end for
Relabel edge x → y with x.ik ∩R.i.
AddNewRule(R,R.name, y)

end if
end for

end if
end procedure

procedure BUILDDDIAGRAM(Policy {R1, R2..Rn})
Create empty node x with no outgoing edges.
Label x with desired field for root.
for index ← n...1, step −1 do

AddNewRule(Rindex, index, x)
end for
return Decision Diagram rooted at x.

end procedure

Thus, an upper bound on the size of the decision diagram

for a policy of n rules and d fields is (2n− 1)d.

Our construction, which is mindful of rules in play, allows

us to tighten this bound considerably. The intuition behind this

is that, while a node with n rules in play can indeed have a

branching factor of (2n− 1), not all these branches still have

n rules in play. Each child node, with m rules in play, has

a maximum outgoing branching factor of 2m− 1 rather than

2n− 1.

For example, consider the edges emerging from the root in

Figure 2. Edge (10, 19) has only one rule in play (the first),

edge (20, 110) has both rules in play, and edge (111, 120) has

only one rule in play (the second). In general, exactly one
outgoing edge still has all n rules in play (this is the edge

corresponding to the intersection of all the rules). There are

also edges with n − 1 rules in play, n − 2 rules in play, and

so on, down to edges with 1 rule in play.

To provide a worst-case bound, we have to identify what

the largest possible decision diagram looks like (for given n
and d). There are two factors to maximize:

3

2016 IEEE 24th International Conference on Network Protocols (ICNP)

3

Fig. 2: Example: building a decision diagram, step by step.

Step 1. First rule from bottom, i.e. rule 2 Step 2. Adding f1 from next rule, rule 1.

Step 3. Adding f2 from rule 1. Step 4. Adding decision from rule 1.

4

2016 IEEE 24th International Conference on Network Protocols (ICNP)

4

1) The branching factor at each node.

2) The number of rules in play along each branch. (An edge

with more rules in play, leads to more rules in play at

the target node, and thus more potential for branching.)

We consider the conditions that hold for the largest decision

diagram (for given n and d).

Theorem 1. No two rules share the same start values or end
values for a field (when the field is a node in the largest
decision diagram for some n and d) .

The proof can be given in the form of a game: given a

policy where this does not hold, we can always find another

- with the same n and d - with a larger decision diagram.

Consider an example ruleset with shared start values.

x1 ∈ [1, 10] → 1

x1 ∈ [20, 30] → 0

x1 ∈ [20, 40] → 1

For any such ruleset, we can edit it to separate the end points,

for example by making starti of rule 3 less than that of rule

2.

x1 ∈ [1, 10] → 1

x1 ∈ [20, 30] → 0

x1 ∈ [15, 40] → 1

This gives us a larger decision tree: we have added a new

outgoing edge, and lost nothing. [Note: we are assuming that

the domain of the field is large enough to let us separate end

points like this. When this assumption does not hold, we have

narrow fields, which we deal with in Section IV.]

Corollary 1.1. At all non-leaf nodes, the rules-in-play sets of
outgoing edges with adjacent labels differ by a single rule (in
the largest decision diagram for some n and d). [For example,
in Figure 2, edges from f1 labeled (10, 19) and (20, 110) have
the rules-in-play sets {1} and {1, 2} respectively. These differ
by only one rule: rule 2.]

Happily, creating the largest decision tree can be broken up

into optimal subproblems. In the largest decision tree, each

subtree rooted at a non-leaf node is as large as possible.

[Again, we can prove this with a game. Suppose the subtree

rooted at a non-leaf node, with n′ rules in play and depth d′,
is not the largest tree given n′ and d′. We simply replace this

subtree with the largest, thus increasing the size of the overall

tree.] We also know that the size of the largest decision tree

cannot decrease as we increase n and d.

From the above, we can conclude that in order to create the

largest decision tree, we should keep as many rules in play

as possible, on the outgoing edges (and thus, at the roots of

the child subtrees). [To be precise, when the child subtrees

are leaves - i.e., when the depth of the decision tree is 1 -

the number of rules in play along the edges does not matter.

However, the tree produced by keeping as many rules in play

as possible, to the greatest depth possible, is never smaller
than some other possible tree.]

Let us consider the sequence S of outgoing edges from a

node, in increasing order of their labels. (e.g. for the root of

Figure 2, and representing edges by their labels, S is ([10, 19],
[20, 110], [111, 120])). Given any rule R, R specifies one

interval of values (for each field); hence the edges with R
in play occur as one continuous sub-sequence in S. In other

words, once a rule is out of play (by exceeding its endi), it

cannot come into play again.

From the above, we know that the largest decision diagram

results when we bring rules into play one by one, and take

them out of play one by one. To maximize the number of

rules in play on the outgoing edges, we should bring rules into

play as quickly as possible (i.e. on the first possible edge in

sequence S), and bring them out of play as slowly as possible

(on the last possible edge in S).

We are now in a position to state the following theorem.

Theorem 2. In the largest decision diagram rooted at a node
with n rules in play, there are 2n − 1 outgoing edges, and
the cardinality of the sets of rules in play along these edges
follows the pattern 1, 2, ..., n− 1, n, n− 1, ...2, 1.

From the above two theorems, we see that in the largest

possible decision diagram (for given n and d), one outgoing

edge has n rules in play, two have n− 1, two have n− 2, and

so on, down to the last two edges which have a single rule in

play.

Computing the size of this largest diagram is clearly a

simple problem of dynamic programming: given the largest

decision diagrams that can be built with 1, 2...n rules in play,

at a depth d−1, we can compute the size of the largest decision

diagram with depth d, and n rules in play.

We also have the following base cases.

1) For any d, when n = 1, the number of leaves is 1. (Only

a single rule is in play, so there is no branching.)

2) d = 0 indicates we are at a leaf node, so the size is 1.

Stating this result formally,

Theorem 3. If we represent the maximum size (measured by
number of leaf nodes) of a decision diagram with n rules and
d fields as f(n, d),

f(n, d) = 2
n−1∑
i=1

f(i, d− 1) + f(n, d− 1)

for n > 1, d ≥ 1

f(1, d) = 1

f(n, 0) = 1

This recurrence is very similar to the standard recurrence

for trinomial coefficients (Delannoy numbers):

D(n+ 1, d+ 1) = 2
n∑

k=0

D(k, d) +D(n+ 1, d)

for n ≥ 0, d ≥ 0

D(0, d) = 1

D(n, 0) = 1

5

2016 IEEE 24th International Conference on Network Protocols (ICNP)

5

In fact, the two recurrences are identical if we change the

variables slightly:

f(n, d) = D(n− 1, d)

which gives us a new bound on the size of decision diagrams.

Our bound is tight: we know exactly the policy with this

decision diagram (and which, therefore, matches the size of

this upper bound).

x1 ∈ [1, 2n− 1] ∧ ... ∧ xd ∈ [1, 2n− 1] → 1

x1 ∈ [2, 2n− 2] ∧ ... ∧ xd ∈ [2, 2n− 2] → 0

x1 ∈ [3, 2n− 3] ∧ ... ∧ xd ∈ [3, 2n− 3] → 1

...

x1 ∈ [n, n] ∧ ...xd ∈ [n, n] → 0

IV. REAL DECISION DIAGRAMS: NEW METRICS

In the previous section, we presented our new bound for the

size of decision diagrams. This bound, the Delannoy number

D(n, d), is much smaller than the old bound of (2n−1)d; for

example, for n = 1000 and d = 10,

f(n, d) = 2.808× 1026 << (2n− 1)d = 1.019× 1033

However, this is still too large, and the bound is tight so there is

no room to reduce it further. There must be more reasons why

decision diagrams do not grow intractably large in practice.

We suggest that the answer can be found in our concepts of

oneprob, allprob, and narrow fields.

A. OneProb and Singletons

In constructing a decision diagram, we have two main

operations that increase its size.

1) Adding a new path. This happens when the new rule

specifies new values for a field, i.e. values for which no

outgoing edges exist.

2) Splitting an edge. When the interval specified by the rule

only partly overlaps with the label of an edge, we ‘split’

the edge. The entire subtree below the edge is copied.

For example, in Figure 2, the new rule has f1 ∈ [10, 110]
and the old edge has f1 ∈ [20, 120]. They partially

overlap. We get new edges labeled f1 ∈ [10, 19],
f1 ∈ [20, 110], and f1 ∈ [111, 120].

Now we consider the impact of singletons. A rule is called

a singleton for field fx if it matches only packets with one

single value of fx, i.e. its interval for fx is a single value like

[29, 29].
It is important to note that a singleton rule at a node is

no different than any other rule, at the lower levels. We only

know that it is a singleton for that one field; this says nothing

about the other fields - it is not at all necessary that the rule

is also a singleton for the fields at lower levels! So as a rule

in play, it is just as powerful as any other rule.

The power of a singleton for field fx is seen at the fx-

labeled nodes. As it covers a single value for fx, it cannot

partially overlap with any other rule. So an edge from an fx
node labeled with a singleton (for fx) cannot be split.

We immediately observe that if all the rules are singletons,

the worst-case branching factor at the node drops from 2n−1
to n (when all the singletons have different values for fx, and

thus produce different branches). However, this attractive idea

is of limited power: even one non-singleton rule can return

the branching factor to 2n − 1. For example, consider rules

R1, R2, R3 with respective intervals [1, 10], [3, 3] and [7, 7].
We have 2× 3− 1 = 5 edges:

1) [1, 2] (with R1 in play)

2) [3, 3] (R1, R2 in play)

3) [4, 6] (R1 in play)

4) [7, 7] (R1, R3)

5) [8, 10] (R1)

To see how having singleton rules (rather than non-singleton

rules) makes the decision diagram smaller, we consider the

number of rules in play along an edge. We will use the new

function g(n, d) to denote the size of decision diagram in

presence of singletons.

Consider an fx-labeled node, with s singletons (and t non-

singleton rules). The singletons either overlap completely, or

they do not overlap at all.

1) If they do overlap, this reduces the branching factor at

the node: there are fewer outgoing edges.

2) If they do not overlap, the number of rules in play along

the outgoing edges is less. Hence the size of the subtrees

below the node is reduced.

For the largest decision diagram, we need to trade off the

“immediate” branching factor at the node and the “potential”

for more branching at lower levels. The solution is only trivial

for the last field, i.e. d = 1: all singletons for the last field

have distinct values. This is because the only lower level is

the leaf nodes - there can be no branching at a lower level.

Singletons increase the size of a decision diagram most

effectively if they split the outgoing edge with the largest

possible number of rules in play. Consider the process of

adding a singleton for field x to any decision diagram. If the

singleton does not split any edge, it introduces only one new

edge, where it is the only rule in play. If it splits an edge

with r rules in play, one edge with r rules is replaced by two

edges with r rules (before and after the singleton), plus one

edge with r + 1 rules (the overlap with the singleton). The

maximum is when r = t.

Our task is simplified by the fact that the largest decision

diagram is produced by adding singletons to the largest

diagram without singletons. The reason is the monotonicity of

the size function. With or without singletons, a diagram with

more edges and more rules in play along an edge is larger. To

make this clear, we present an example.

• Consider two diagrams, where the number of rules-in-

play are (1, 2, 1, 2, 1) and (1, 2, 3, 2, 1). We add two

singletons to each of these.

• For any diagram A, the size of A grows fastest by adding

singletons that split the edge with the most rules in play.

6

2016 IEEE 24th International Conference on Network Protocols (ICNP)

6

• The first decision diagram only has edges with up to 2
rules in play. After adding the singletons, the maximum

size for the first decision diagram is

g(1, d)+

max
(
g(4, d) + 2g(2, d), 2g(3, d) + 3g(2, d)

)
+

g(1, d) + g(2, d) + g(1, d)

• For the second decision diagram, the maximum size is

g(1, d) + g(2, d)+

max
(
g(5, d) + 2g(3, d), 2g(4, d) + 3g(3, d)

)
+

g(2, d) + g(1, d)

which is clearly larger.

Generalizing from the example, we see that the largest decision

diagram without singletons not only starts out as the largest,

but also produces the largest increases, as it has an edge with

t rules in play; no other diagram can do better.

There remains the question of whether the singletons them-

selves should overlap, or not. This is not straightforward. Let

us assume that for each field the number of singletons is s, the

number of non singletons is t (i.e. n = s+ t), and the depth

of the tree (below the node we are considering) is, as usual,

d. Then to find the size of the largest decision diagram, we

try all the partitions of s singletons; for example, if s = 4, we

need to try 1+1+1+1, 1+2+1, 1+3, 2+2, and 4. Given

g(n, d) is the formula for maximum size, n = s+ t, and that

we partition the singletons into a groups {s1, s2, ...sa},

g(n, d) =2

t−1∑
i=1

g(i, d− 1)

+max
[
(a+ 1)g(t, d− 1)

+
a∑

j=1

g(t+ sj , d− 1)
]

n =s+ t

The “max” of the formula is taken over all partitions. In

other words, we compute the size for all possible partitions,

according to the formula; the maximum is taken.

The probability that a rule is a singleton is given by

oneprob, so our intuition is that a high value of oneprob leads

to a smaller decision diagram. [Singletons are also much less

likely to overlap than other rules are. As we are performing

worst-case analysis, we do not make use of this factor, but it

most likely also plays a role in the tractable size of practical

decision diagrams.] We explore the impact of singletons in the

Results Section.

B. AllProb and All-Matches

The behavior of all-matches, that is, rules that match all

values for a given field, is simple. At a given node, every

all-match rule covers the entire domain for the field. So the

all-matches all behave like one single large rule, which adds u
(the number of all-match rules) to the number of rules in play

on each edge. We can update the formula for largest decision

diagram as follows.

g(n, d) =2

t−1∑
i=0

g(i+ u, d− 1)

+max
[
(a+ 1)g(t+ u, d− 1)

+
a∑

j=1

g(t+ sj + u, d− 1)
]

n =s+ t+ u

where as in the previous section, the singletons are partitioned

into a groups named s1...sa, and the maximum size is taken

over all such partitions.

Intuitively, the size of the decision diagram is reduced by

increasing the proportion of all-match rules, as most of the

rules have total (rather than partial) overlap. In the extreme

case where all the rules are all-matches, the first rule resolves

all packets, and the decision diagram becomes a linked list

running straight from the root to the decision of the first rule.

The impact of allprob, the proportion of rules that are all-

matches, is experimentally shown in the Results Section.

C. Narrow Fields

In our construction of decision diagrams, we state that the

outgoing edges from a node can carve the domain into 2n−1
pieces. This statement made the unspoken assumption that the

domain is large enough to divide into so many distinct pieces.

However, this assumption is not true for some domains. These

are the ones we call narrow fields.

A field fw represented with w bits has a domain of 2w

values, so the number of outgoing edges from a fw node is

upper bounded by 2w. [Every possible value of the field labels

a distinct edge.] A narrow field is one where this is the tighter

upper bound, i.e. 2w < 2n− 1.

To see the impact of narrow fields on the decision diagram,

we place all the narrow fields together, as the fields closest to

the leaves (i.e. with d = 1, 2...dnarrow. Suppose the fieldwidth

is W bits, i.e. the narrow fields can all be represented using

W bits. Our computation for the size of the decision diagram

does not change for the non-narrow fields; however, the “leaf”

nodes for this tree are now the roots of decision trees for the

narrow fields, which expand to 2W bits each.

We compute the size of the upper tree (without narrow

fields) as per the previous formula, and multiply the result

by 2W to get an upper bound on the size. This idea is similar

7

2016 IEEE 24th International Conference on Network Protocols (ICNP)

7

to the automata size bound of Erradi [15].

g(n, d) =2
t−1∑
i=0

f(i+ u, d− 1)

+max
[
(a+ 1)g(t+ u, d− 1)

+
a∑

j=1

g(t+ sj + u, d− 1)
]

n =s+ t+ u

for d > dnarrow, the number of narrow fields, and

g(n, d) =g(n, d− 1) ∗ 2wd

otherwise. (wd = bit width of field at height d.)

However, this is no longer a strict upper bound. Consider

our decision diagram, with wide fields closer to the root and

narrow fields closer to the leaves. There exist edges from the

upper nodes to the lower nodes with a very small number of

rules in play - 1, 2 etc. For these edges, the lower nodes are

no longer “narrow” fields, as the bound of 2n − 1 is again

smaller than 2w.

Though we do not have a strict bound in the presence of

narrow fields, their existence also serves to reduce the size

of the decision diagram considerably, as can be seen in the

Results section.

V. MINIMUM EQUIVALENT POLICIES

In this section, we discuss a completely new application of

our annotated decision diagrams. Keeping track of rules in play

allows us to take any policy and find a minimum equivalent

policy, i.e., the smallest policy with the same decision for every

packet as the original policy. (To be strictly accurate, we find

the minimum equivalent policy that can be expressed with

rules present in the original policy.) This is a much stronger

statement than the minimality guarantees of algorithms such

as Probe [16]; these simply find a minimal policy, i.e. one

with no redundant rules. For example,

x ∈ [1, 100] ∧ y ∈ [1, 100] → 0

x ∈ [1, 50] ∧ y ∈ [1, 100] → 0

x ∈ [51, 100] ∧ y ∈ [1, 100] → 0

If we delete the first rule, we get a policy that is minimal, but

not minimum (as we could have kept the first rule and deleted

the other two to get a smaller, equivalent policy).

The intuition behind our algorithm, LeafTrim, is simple. We

delete rules under the constraint that we cannot change the

decision of the policy for any packets. The decision diagram

may change; some branches may merge, so different leaf nodes

become a single node. (As we never add rules, there will be

no new paths or new leaves to consider.) But the decision

cannot change for any packet - so we cannot make a change

that changes the decision at any leaf node.

In brief, to ensure that the decision at a leaf node is

preserved, we must keep at least one rule R with this decision,

and also make sure that any conflicting rules that precede R
are removed. Using the Boolean variable pi to mean that rule

i is present, we can express this as a logical constraint.

For example, consider a leaf node with the accept rules

3, 13 and the discard rule 7 in play. As long as we do not

delete rule 3, deleting other rules does not affect the decision

at this leaf. What if we delete rule 3? We must delete rule 7 (so

it does not become the first rule to match these packets), and

keep rule 13. In other words, the decision of the leaf remains

unchanged iff the following formula holds.

p3 ∨ (¬p7 ∧ (p13))

For a more complex case, with more rules in play, we can

apply the same logic recursively. For example, suppose we

have accept rules 3, 13 and 23, and discard rules 7, 10 and

17.

• If we delete rule 3, we must delete 7 and 10.

• If we also delete rule 13, we must delete 17.

• If we have deleted both 3 and 13, we cannot delete 23. We

cannot preserve the policy decision for packets resolved

at this leaf, if we delete all the rules with this decision.

(Here, the decision was accept, as the first rule - rule 3
- was an accept rule.)

The constraint formula for the leaf is

p3 ∨ (¬p7 ∧ (¬p10 ∧ (p13 ∨ (¬p17 ∧ (p23)))))

We now present the algorithm to find the constraint formula

for a leaf node.

1) At a leaf node, we start with the first rule in play. All

other rules with the same decision are complying rules,

and the others are conflicting rules.

2) We traverse the list of rules in play, in order, building

an expression (string), as follows :

• If the rule Ri is complying, we add “pi ∨ (”.

• If it is conflicting, we add “¬pi ∧ (”.

• At the end, we close all parentheses.

The final step is to notice that, to preserve the semantics of

the entire policy, it is both necessary and sufficient to return

the same decision for all packets - no matter which leaf node

they are resolved at.By taking the AND of the expressions for

all the leaf nodes, we get the constraint expression which must

be satisfied to keep the decision of the policy unchanged for

all packets.

To find the minimum policy, we take the constraint expres-

sion for the original policy (as described above), and search

for the solution with the smallest number of pi set to 1. In

other words, we have reduced our original problem (finding

the smallest subset of rules that will preserve the semantics

of the policy) to the Min-One SAT problem. This can now be

solved with a standard fast SAT solver; we use OptSAT [17].

The complete algorithm for computing a minimum equiv-

alent policy is formally presented in Figure 3. In the next

section, we go on to discuss our experimental results, including

the performance of this algorithm.

8

2016 IEEE 24th International Conference on Network Protocols (ICNP)

8

Fig. 3: LeafTrim Algorithm for Minimum Equivalent Policy.

procedure LEAFCONSTRAINTS(decision tree D)

Create empty string allConstraints
for leaf in decision tree D do

Create string leafConstraints = “(”
Sort rules in play at leaf by priority to get LeafRules

DecisionOfLeaf = decision of highest-priority

rule in leaf (i.e. first rule in LeafRules)

for rulei in LeafRules do � i is the index of rulei
in the original policy

if decision of rule == DecisionOfLeaf then
leafConstraints = leafConstraints +

“pi ∨ (”
else

leafConstraints = leafConstraints +
“¬pi ∧ (”

end if
end for
Close all open brackets in leafConstraints
allConstraints = allConstraints + ” ∧ ” +

leafConstraints
end for
return allConstraints.

end procedure

procedure LEAFTRIM(policy P)

DDiagram = BuildDDiagram(P)
Constraints = LeafConstraints(DDiagram)
RulestoKeep = MinOneSAT (Constraints)
policy P ′ = rules of P named in RulestoKeep
return P ′

end procedure

VI. EXPERIMENTAL RESULTS

In this section, we begin by showing, experimentally, how

our new metrics affect decision diagram size for practical

policies (n = 100, 200...1000 rules and d = 5 fields). We start

by showing the original bound f(n, d), then g(n, d), our new

bound; next, we introduce our mitigating factors, introducing

first allprob, then narrow fields, and finally oneprob. The

results are shown in Figure 4.

Our second set of experimental results are concerned with

the LeafTrim algorithm for redundancy removal. We are

concerned about two issues:

1) Effectiveness. How powerful is the new algorithm - is

there a noticeable difference in the size of a minimum

policy, as computed by LeafTrim, and a minimal policy

computed by a state-of-the-art algorithm (here, we have

used Probe [16])?

2) Cost. Is the algorithm feasible to run for large policies?

We are happy to report that the algorithm, though very much

slower than Probe, is far more effective in terms of the size

reduction. However, we are only able to run it for small values

Fig. 4: Performance of size bounds for Decision Diagrams

(a) First bound: smaller than (2n− 1)d

(b) Effect of allprob. (Top to bottom, 0, 20, 40, 60, 80.)

(c) Effect of narrow fields. allprob = 40. (Lines, top to bottom, 5 wide fields;
4 wide + 1 narrow; and 3 wide + 2 narrow. Narrow fields 2 bits wide.)

(d) Effect of oneprob. (Top to bottom, 0, 20, 40, 60.) allprob = 40, 4 wide
+ 1 narrow field.

9

2016 IEEE 24th International Conference on Network Protocols (ICNP)

9

of n (50 and 100 in our tests); for n = 200 the algorithm took

21.6 GB of virtual memory and crashed. LeafTrim, at least in

its naive form, is not yet scalable to large policies.

In our tests, we took the average of 400 observations each,

using generated firewalls with d = 5, one narrow field (2 bits),

and a width index of (40, 40) for the tests, which is in line

with the practical firewalls we have observed.

A brief digest of our results is as follows.

Length Time(sec.) Reduction(%age)

n = 50 80 48

n = 100 3185 61

We add that the SAT solver OptSAT was extremely fast; its

running time was less than 0.5% of the total. The reported

time was expended almost entirely in constructing the FDD

and building the constraint formula for solution.

For comparison, here are the corresponding figures for a fast

state-of-the-art algorithm, Probe [16], on the same policies.

Clearly, redundancy removal with Probe is much faster, but

far less effective.

Length Time(sec.) Reduction(%age)

n = 50 0.081 12.5

n = 100 0.292 16

As redundancy removal is an offline process (we only need to

remove redundancy once, and not repeatedly while using the

policy), a stronger algorithm like LeafTrim is clearly a better

choice. However, as it stands, LeafTrim is still not scalable to

a large policy. Our future work will focus on the question of

whether it can be optimized and scaled up.

VII. CONCLUDING REMARKS

In this paper, we introduce the concept of “rules in play”,

and make two contributions to the theory of network policies.

First, we give a tight upper bound on the size of policy decision

diagrams, and propose some new metrics (oneprob, allprob

and fieldwidth) that may explain why the size does not grow

explosively for practical policies. We contend that decision

diagram based algorithms are tractable in practice because

their running time is not only bounded by O(nd), as was

previously thought, but also constrained by these new metrics;

practical policies have tractable values for these metrics.

Our second contribution is LeafTrim, the first optimization

algorithm that can produce a truly minimum-length policy.

The algorithm is only tractable for small policies, but in our

tests, dramatically improves on earlier algorithms that can only

produce a minimal policy (one with no redundant rules).

Our work on decision diagrams suggests several problems

for further study. For example, how do our metrics influence

other algorithms and data structures for network policies, such

as decision-diagram compression by Bit Weaving [18]? Can

our new algorithm for policy optimization be scaled up to large

policies? We intend to explore these questions in our future

work.
REFERENCES

[1] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” in Proceedings of IEEE INFOCOM, 1998.

[2] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high
speed ip routing lookups,” in Proceedings of ACM SIGCOMM, 1997, p.
2536.

[3] S. Suri, G. Varghese, and P. Warkhede, “Multiway range trees: Scalable
ip lookup with fast updates,” in GLOBECOM, 2001.

[4] S. Sahni and K. Kim, “O(log n) dynamic packet routing,” in IEEE
Symposium on Computers and Communications, 2002.

[5] A. X. Liu and M. G. Gouda, “Firewall policy queries,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 20, no. 6, pp. 766–777,
2009.

[6] E. Al-shaer, W. Marrero, A. El-atawy, and K. Elbadawi, “Network
configuration in a box: Towards end-to-end verification of network
reachability and security,” 2009.

[7] H. H. Hamed, E. S. Al-Shaer, and W. Marrero, “Modeling and verifica-
tion of ipsec and vpn security policies,” in ICNP, 2005, pp. 259–278.

[8] D. Eppstein and S. Muthukrishnan, “Internet packet filter management
and rectangle geometry,” in SODA, 2001, pp. 827–835.

[9] M. Frantzen, F. Kerschbaum, E. E. Schultz, and S. Fahmy, “A framework
for understanding vulnerabilities in firewalls using a dataflow model of
firewall internals,” Computers & Security, vol. 20, no. 3, pp. 263–270,
2001.

[10] D. Hoffman and K. Yoo, “Blowtorch: a framework for firewall test
automation,” in Proceedings of the 20th IEEE/ACM international Con-
ference on Automated software engineering, 2005, pp. 96–103.

[11] H. B. Acharya and M. G. Gouda, “Firewall verification and redundancy
checking are equivalent,” in INFOCOM, 2011, pp. 2123–2128.

[12] D. Shah and P. Gupta, “Fast updating algorithms for tcams,” IEEE
MICRO, vol. 21, no. 1, p. 3647, 2001.

[13] A. Basu and G. Narlika, “Fast incremental updates for pipelined for-
warding engines,” in Proceedings of IEEE INFOCOM, 2003.

[14] H. B. Acharya, “On rule width and the unreasonable effectiveness
of policy verification,” in IEEE 39th Conference on Local Computer
Networks, LCN 2014, Edmonton, AB, Canada, 8-11 September, 2014,
2014, pp. 314–321.

[15] A. Khoumsi, W. Krombi, and M. Erradi, “A formal approach to verify
completeness and detect anomalies in firewall security policies,” in
Foundations and Practice of Security, 2014, pp. 221–236.

[16] H. B. Acharya and M. G. Gouda, “Projection and division: Linear-space
verification of firewalls,” Distributed Computing Systems, International
Conference on, pp. 736–743, 2010.

[17] E. Giunchiglia and M. Maratea, “Optsat: A tool for solving sat related
optimization problems.” 2006.

[18] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix
approach to compressing packet classifiers in tcams,” IEEE/ACM Trans.

Netw., vol. 20, no. 2, pp. 488–500, 2012.

10

2016 IEEE 24th International Conference on Network Protocols (ICNP)

10

