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Abstract—Policies, such as routing tables and firewalls, are
fundamental components of networking infrastructure. Unfortu-
nately, existing policy verification and optimization algorithms
require O(nd) time, where n is the number of rules (thousands),
and d the number of fields (usually < 10). However, these
algorithms perform very well in practice. In this paper, we provide
the explanation for this result: n and d are not the only parameters
of interest! Through experimental study of our Parallel Next-step
Lookup system PaNeL, as well as the FDD and Probe algorithms
for policy verification, we clearly demonstrate the importance of
our proposed new metric - the “width index”. Some established
algorithms (such as FDD, used for structured firewall design)
indeed become intractable for policies with poor width index
values. We therefore suggest that the “unreasonable effectiveness”
of such algorithms for practical policies is possible because such
policies have a reasonable width index.

I. INTRODUCTION

Policies, such as routing and filtering policies (implemented
in routing tables and firewalls) are essential to the operation of
packet-switched networks, such as the Internet. Routers and
middleboxes examine incoming packets and decide, based on
the relevant policy, what course of action to pursue for each
packet. Another important example occurs in system security,
where in addition to packets, messages and system calls can be
checked by Access Control Lists such as firewalls and Intrusion
Detection Systems.

As may be expected, there has been considerable research
into the problem of how to perform fast, correct resolution of
packets, i.e. deciding which rule of the policy to apply to a
given packet. In our own previous work, we developed a fast
packet processing engine, PaNeL [1], which runs on a standard
and cheap parallel computer (the eXtensible Multi Threading
architecture by Vishkin [2]), rather than a specific-purpose
machine such as a TCAM [3]. PaNeL showed clearly superior
performance to serial resolution for policies of a few thousand
rules, and by adopting the idea of processing a policy in
“batches” of rules, we were able to obtain a speedup of around
20 times even for large policies of 100000 rules. However,
in our studies comparing PaNeL with serial resolution, we
found that factors besides the length of the policy (i.e. the
number of rules) played a very important role in our results.
On a more thorough investigation into these factors, we were
able to identify the issue : serial resolution is fast for policies
whose first rules match large numbers of packets, while parallel
resolution is much more uniform in performance.

In this paper, we begin by proposing a new metric of a
policy called the “width index”; this metric seeks to quantify
how “fat” the rules of the policy are, i.e. how many packets
can be expected to match them. As we show, across policies of
different lengths, the width index is the factor that determines

whether PaNeL or serial resolution show better performance.
We then extend the scope of our work, by studying the
impact of width index on FDD and Probe, two representative
algorithms for policy verification. (We selected FDD as an
example of an algorithm that preprocesses policies and builds
a fast data structure, because it is used in structured firewall
design. Probe was selected as an example algorithm that does
no such expensive precomputation.) Our results show that the
width index has a very strong effect on the performance of
these algorithms - so much so, that we propose that the reason
for the good performance of algorithms like FDD in practical
usage (despite their poor theoretical running time of O(nd)) is
that practical policies have “friendly” values of width index.

We begin by presenting our definitions and concepts, and
a very brief description of XMT, in the next section. Next, we
discuss PaNeL, FDD and Probe algorithms, and how they may
be affected by variation of the width index. We then present
our experimental results, and show that they agree quite well
with what we intuitively expect. Finally, we mention how our
work fits into the context of related research in the area, and
offer some concluding remarks.

II. TERMS AND CONCEPTS

In this section, we define the terms and concepts used in the
paper, such as policies and properties, and formally introduce
our concept of the “width index”.

A. Packets, Rules, and Matching

In our work, we model a packet as a d-tuple of non-
negative integers. The reason for this model is that, in order to
decide what to do with a packet (such as whether to forward
it, which port to forward it on, etc.), network routers and
firewalls examine its various attributes - mostly values in the
packet header, such as source address, destination address,
source port, destination port, protocol, and so on. (In ‘deep
packet inspection’, attributes from the packet payload are also
examined.) The d fields of our packet model represent the d
attributes examined.

A rule represents a single rule in a routing table or firewall,
and consists of two parts: a predicate and a decision.

The rule predicate is of the form

x1 ∈ [x1,1, x1,2] ∧ x2 ∈ [x2,1, x2,2] . . . xd ∈ [xd,1, xd,2]

where each interval [xk,1, xk,2] is an interval of non negative
integers, drawn from the domain of field k. (For example,
suppose the third field in packets and rules represents source
IP address. In IPv4, the domain of this field is [0, 232 − 1].
Then, in any rule, 0 ≤ x3,1 ≤ x3,2 ≤ 232 − 1.)
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The decision is an action, such as (in a firewall) accept or
discard.

A packet that satisfies the predicate of a rule is said to match
the rule. For example, the packet (1, 26, 7) clearly matches the
rule

x1 ∈ [0, 108] ∧ x2 ∈ [21, 65535] ∧ x3 ∈ [7, 616]→ accept

A rule that cannot be matched by any packet is called a
match-none rule, while a rule matched by every possible packet
(in the domain of packets under consideration) is called an
match-all rule.

B. Policies and Packet Resolution

A policy consists of multiple rules (as defined in the previ-
ous subsection), and a specification of which action to execute,
in the event that multiple rules match a given packet. There
are two principal methods in use to decide the precedence of
matching rules.

1) First Match. The rules are arranged in sequence in the
policy, and the action of the first rule in the sequence
that is matched by a packet is the action executed.
This is the method usually used in firewalls.

2) Best Match. One specific field is chosen and, out of
the rules matched by the packet, the one with the
smallest interval for this particular field has prece-
dence.
This is the method used in routing tables. The field
chosen is the destination IP, and this technique is
called ’longest prefix matching’. (In routing tables, IP
address intervals are usually denoted by prefixes, e.g.
[1687603200, 1687603455], which in standard dotted-
quad notation is 100.150.200.0−100.150.200.255, is
written 100.150.200.0/24. Thus the best match is by
the rule which had the longest prefix and was matched
by the packet.)

The practical order of deciding precedence in a router is
quite complicated. In short,

1) First, find the best match.
2) In case of conflict, choose rules in the order:

a) Static routes
b) Dynamic routes, in order (usually EIGRP,

OSPF, ISIS, RIP)
c) Default route

3) If no rule matches, discard the packet.

We note that this entire procedure can be effectively reduced
to first match, by placing the rules in order with the primary
sort key being the specified prefix length, and the secondary
sort key being the type of rule. Hence, in our work, we simply
assume first match semantics for all policies.

The ‘winning’ rule, the decision of which is implemented
for a packet, is said to resolve the packet.

C. Width Index, PaNeL and XMT, and Verification

In policy research, the complexity of a policy is considered
to be affected by two principal factors. The first is n, the
number of rules in the policy, which can be up to several
thousand; the other is d, the number of fields in a rule, which
is usually around 5 − 10. For example, the complexity of the
simple standard algorithm for resolution - check, for each of d
fields of the packet, that the value falls in the interval specified
by the rule; repeat until a rule is matched - is clearly O(nd).

However, we contend that this is not sufficient information
to predict the complexity of a policy. Most rules in practical
policies are concerned with very specific uses, and have mul-
tiple fields set to either a single specific value, or to “All” -
i.e. the entire domain of the field. (For example, firewalls built
using Structured Firewall Design have many fields set to All.)
As we demonstrate in this paper, policies with high proportions
of fields set to single values, or to All, can show significantly
different behavior than other policies with the same values of
n and d. Accordingly, we introduce a new concept, the width
index.

The width index of a policy consists of two values,
(allprob, oneprob). allprob is the probability that, on ran-
domly choosing a field and a rule in the policy, the interval
specified by the rule for the field is “All”. Similarly, oneprob is
the probability that the interval specified by a randomly chosen
rule for a randomly chosen field, is a single value, such as [6, 6].

We owe the idea of the width index to our study of
Parallel Next-Step Lookup, i.e. PaNeL, a system to perform
fast resolution using a standard parallel machine, XMT.

XMT is an approximate implementation of a Parallel Ran-
dom Access Machine (PRAM) - theoretically, a shared-memory
machine in which an unbounded number of processors have
unit-time access to unbounded memory. Its main limitation
is that if multiple threads write to a variable at once, it
is arbitrary which value gets written (formally, it provides
arbitrary concurrent-read, concurrent-write semantics). Despite
this limitation, and the fact that a practical implementation can
only support a finite number of threads, we demonstrated in our
previous work [1] that PaNeL outperforms serial resolution by
more than an order of magnitude.

During this study, we made a very simple observation: fast
policies are usually those whose first rules match many packets.
Expanding on this observation, we gradually developed the idea
of the width index, and how it might affect the performance
characteristics of resolution.

We then expanded the scope of our study to check how
width index affects the performance of other policy algorithms,
besides packet resolution. In particular, we looked at policy ver-
ification, the process of determining whether a policy satisfies
a property. (We adopt the convention that a property is simply
a rule. The policy satisfies the property iff, for every packet p
that matches the property P , the decision implemented by the
policy for packet p is the decision of property P .)

There are two main types of policy verification algorithms.
The first preprocess the property into a decision diagram, and
then use this structure to rapidly answer queries about various
properties. The second type use information that is available
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only after receiving the property, and use it to query the policy
in an optimized manner.

Over the next few sections, we provide brief accounts of
PaNeL and of policy verification algorithms of both types,
together with a discussion of how the width index may be
expected to affect their performance characteristics.

III. PANEL AND FAST RESOLUTION

In this section, we give a brief description of the PaNeL
system for resolution on a parallel machine, and discuss how
varying the width index can affect its performance compared
to simple (linear) resolution.

Resolution involves finding the decision of the highest-
priority rule in the given policy that is matched by the given
packet. A parallel machine can speed up the search: it checks
if the given packet matches the rule, for all the rules in the
policy, in parallel. In case there are multiple matches, however,
deciding priority is a problem - as all the rules are now checked
in parallel, it is no longer possible to check the rules in order
(most significant to least significant) and stop as soon as a rule
is matched by the packet.

PaNeL [1] solves this problem by reducing it to finding
the first 1 in an array A of 0/1 elements. Element A[i] of the
array holds the Boolean value of whether the packet matches
rule Ri; the rules are sorted in order of decreasing precedence,
so the first 1 corresponds to the resolving rule. To resolve a
packet, it is sufficient to return the decision of rule Ri, such
that A[i] == 1 and there exists no j < i s.t. A[j] == 1.

To find the first 1, PaNeL computes the prefix sum of array
A. The prefix sum of an element A[i] in an array A is the sum
A[1] + A[2] + ..A[i], and the prefix sum of the array A is the
array A+ such that for all i, A+[i] is the prefix sum of A[i].
The first 1 is the only element in A which is 1 and whose
prefix sum is also 1. (All the other elements either have the
value 0, or if they contain 1, this 1 adds to the prefix sum so its
value changes.) Therefore, it is sufficient to return the decision
of rule Ri, such that A[i] == A+[i] == 1.

In theory, this algorithm should have high performance. It
is possible to check if a packet matches a rule in O(d) time;
the prefix sum for an array of n elements can be computed in
O(log n) time [4]; and after this computation, the first matching
rule can be identified in constant time (by checking if A[i] ==
A+[i] == 1, for all i, in parallel). The total time to resolve
a packet, O(d) + O(log n) + O(1), i.e. O(d + log n), is far
superior to the O(nd) time expected for simple serial resolution
(checking all the rules in sequence for the first match).

However, in practice, we found that the algorithm was fast
for policies of a few thousand rules, but not larger, as it always
had to process all the rules. In contrast, the serial solution
stops at the first match - and if this match comes early in the
sequence, the time taken is small.

Based on this insight, PaNeL processes a given policy in
“batches” of rules. The function for parallel resolution is called
with the given packet and a policy consisting of the first step
rules of the given policy Y . If no rule in the first batch resolves
the given packet, ParallelResolve is called again, this time with

Fig. 1. The PaNeL algorithm for Packet Resolution
procedure PRESOLVE(Policy [R1, R2..Rn], Packet p)

A[n], A+[n] : integer arrays
ans← −1 : default ans
for i← 1, n pardo

A[i]←Match(Ri, p)
end for
A+ ← PrefixSum(A)
for i← 1, n pardo

if A[i] == 1 ∧A+[i] == 1 then
ans← Ri.D

end if
end for
return ans

end procedure
procedure PANEL(Policy Y = [R1, R2..Rn], Packet p)

step← 1000, index, start, stop
ans← −1 : default ans
for index← 1, n

step do
start← (index− 1) ∗ step+ 1
stop← min(start+ step− 1, n)
ans← PResolve([Rstart, ...Rstop], p)
if ans 6= −1 then

break
end if

end for
return ans

end procedure

a policy consisting of the next step rules, and so on, until some
rule resolves the packet, or there are no more rules in Y . This
is the actual PaNeL system, which is competitively fast for
large policies [1].

We now come to the question of how width index can
affect the performance of PaNeL relative to simple resolution.
The width index of a policy consists of two parameters -
(allprob, oneprob) - the probability that the specified interval
(for a field in a rule) covers its domain, and the probability
that the interval is a single value. Clearly, increasing the value
of allprob increases the number of packets that match each
rule, and therefore reduces the expected number of rules that
have to be checked (in order of decreasing priority) until one of
them resolves the packet. Increasing oneprob has the opposite
effect. Hence for high values of allprob and low values of
oneprob, most packets are resolved after checking only a few
rules: serial resolution is fast. Conversely, for low values of
allprob and high values of oneprob, serial resolution is slow.
PaNeL should show similar behavior, but with a much flatter
curve, as it aggregates the rules into batches; the curve should
be flatter for larger batch sizes.

After introducing and discussing the FDD and Probe algo-
rithms for verification in the next two sections, we show in
our results section (Section VI) that the experimental evidence
agrees quite well with this analysis.

IV. FIREWALL DECISION DIAGRAMS

In this section, we describe the verification of policies
using Decision Diagrams, as proposed by Gouda [5]. (As the
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algorithm was originally employed for firewalls, we will use
their traditional name of Firewall Decision Diagrams.)

A firewall decision diagram (over fields f1..fd) is an
acyclic, rooted digraph. In an FDD, every node with no
outgoing edges is marked with a decision (in case of firewalls,
accept or discard), and is a terminal node. Similarly, every
node with at least one outgoing edge, i.e. a nonterminal node,
is marked with the name of a field. The outgoing edges from
a nonterminal node are marked with values for its field, and
the values marked on the edges (from a single node) do not
overlap.

An FDD also has two properties.

1) It is weakly connected: there is at least one directed
path from the root to every other node.

2) No directed path in the FDD has more than one node
labeled with the same field.

Thus, an FDD is a representation for a simple deterministic
finite automaton. Given any packet p = (p.f1, ..p.fd), there
is exactly one path from the root corresponding to the field
values of p, and it terminates in a terminal node marked with
a decision; this is the decision of D for p.

Clearly, given a policy with n rules of d fields, an FDD
can perform packet resolution in O(d) time. However, for
policy verification, it is essential to follow every path from
the root corresponding to packets that match the property; as
the property can conceivably specify all possible packets, in
the worst case it is necessary to follow all paths from the root
to the terminal nodes of the FDD, i.e. it is lower bounded by
the size of the FDD.

We now consider the worst case size of an FDD. Clearly,
the worst case is when the FDD is a tree (say, for example, we
may have a tree with root f1; its neighbors are f2, and so on
down to fd, whose neighbors are the leaf i.e. terminal nodes)
and the branching factor of each node is as large as possible.

As there are n rules in the policy, there can be a maximum
of 2n−1 outgoing edges for a node. (Each edge must be labeled
with at least one interval. The n rules have 2n end points - each
interval has a start and an end. These 2n end points thus divide
the domain into a maximum of 2n−1 intervals. Hence we can
have at most 2n− 1 edges from a node.)

Thus, the best known upper bound on the size of an FDD
for a policy of n rules and d fields is (2n− 1)d, i.e. O(nd).

In our study, we consider how varying the width index
affects the size of FDDs. For our explanation, it is necessary
to examine the algorithm for FDD construction, presented in
Figure 2 (summarized from Gouda [6]).

The FDD is built by adding rules to a root node, initially a
completely empty node with no outgoing edges. The algorithm
is recursive; when a rule is passed to a node labeled with a field,
it may add new paths outgoing from the node, then passes rules
with values for the remaining fields down to lower nodes in
the FDD. There are two operations that increase the size of the
FDD.

Fig. 2. Building FDD from policy
procedure ADDNEWRULE(Rule R, node x)

if x is a terminal node then
Label x with the decision of R.

else
i is the field of node x.
R.i is the interval for field i in R.
x.i1, x.i2.. are the values on the edges from node x.
Build new path from x, forming decision diagram of

R. (Path has new nodes and edge labels as per the fields in
R, other than field of x. Path ends in decision of R.)

Label outgoing edge connecting x to new path with
R.i− {x.i1, x.i2..}. If label is empty, delete this new path.

for All x.ik do
if x.ik ∩R.i is empty then

continue
else

y is the target of edge labeled x.ik.
Copy the entire subgraph rooted at y.
Let y′ be the new copy of y.
Add edge x→ y′, labeled x.ik −R.i.
Relabel edge x→ y with x.ik ∩R.i.
AddNewRule(R, y)

end if
end for

end if
end procedure
procedure BUILDFDD(Policy {R1, R2..Rn})

Create empty node x with no outgoing edges.
Label x with desired field for root.
for index← n, 1 step −1 do

AddNewRule(Rindex, x)
end for
return FDD rooted at x.

end procedure

1) Adding a new path, when the rule specifies new values
for the field at the node, for which no outgoing edges
exist.

2) When the interval specified by the rule partly overlaps
with the label of an outgoing edge, we ‘split’ the edge
into two edges, labeled with x.ik∩R.i and x.ik−R.i,
and make two copies of the subgraph below. (The
edge with x.ik∩R.i deals with the part that overlaps,
so we pass the remainder of the rule recursively to
the node along that path.)

Now we consider the effect of the width index
(allprob, oneprob) of a policy on the size of its corresponding
FDD.

A high value of oneprob, clearly, will lead to many field
values being a single integer, and thus, very few overlaps;
it may be expected that the resulting FDD will have low
branching factor at the lower nodes, and the size of the FDD
does not become too large. The size of the FDD should
decrease with increasing oneprob.

The behavior of allprob is more complicated. Increasing
the value of allprob leads to “wide” rules, which overlap with
each other; for moderate values, this leads to a complicated
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FDD. However, when allprob grows sufficiently large, most
of the cases are of total (rather than partial) overlap, which
does not lead to an increase in the size of the FDD. In fact,
in the extreme case of allprob = 100, the FDD reduces to
a linked list (from the root to the decision of the first rule,
which resolves all packets). Thus, we expect that FDD size
should increase and then decrease with increasing allprob.

V. PROBE AND THE PROJECTION-DIVISION ALGORITHM

Probe, by Acharya and Gouda [7], is a policy verification
algorithm. It attempts to find a witness packet, i.e., a packet p
such that the given policy Y and the property P do not return
the same decision for packet p. Iff there is no such packet, Y
satisfies P .

For simplicity, we will label the decision of P to be “true”
and all other decisions to be “false”. Probe appends a match-all
rule to Y with the decision “false”, so P decides “true” and Y
decides “false” for witness packets (rather than having cases
where Y returns no decision at all for a witness packet).

Next, as the search space is constrained to packets that
match P , we perform projection of Y over P . The predicate of
every rule in Y is replaced by its intersection with the predicate
of P . (Rules for which this intersection is empty, are simply
removed.) For example,

R1 = x1 ∈ [0, 108] ∧ x2 ∈ [21, 255] ∧ x3 ∈ [7, 61]→ R1.D

P = x1 ∈ [0, 100] ∧ x2 ∈ [0, 100] ∧ x3 ∈ [0, 100]→ P.D

R1/P = x1 ∈ [0, 100] ∧ x2 ∈ [21, 100] ∧ x3 ∈ [7, 61]→ R1.D

Further, as soon as we find a rule (say RP ) that covers P
- i.e., is matched by every packet that matches P - we stop:
no subsequent rules will resolve a witness packet, so they are
of no importance.

The result of projecting Y over P is the policy Y/P . Given
Y = [R1, ..Rn], we have Y/P = [R1/P, ..RP /P ].

Next, Probe examines the values of field f1 in the rules in
Y/P . Suppose in rule Ri, the corresponding interval is [ai, bi].
If Ri has the decision “true”, Probe adds a to a set S1; if
the decision is “false” (and b + 1 does not fall outside the f1
interval of P ) Probe adds b+ 1 to the set.

The same procedure is followed for all the fields, forming
sets S2 .. Sd.

Finally, Probe uses Y/P to resolve all the packets p in the
Cartesian product S1×S2× ...Sd. Iff there is no witness packet
in this set, Y satisfies P . [The formal proof of the correctness
of this algorithm is published in [7].]

In the worst case, Probe examines md packets, where m,
the length of Y/P , is upper bounded by n. Thus the best known
bound on the complexity of Probe is also O(nd).

“Division” (also known as slicing) is not integral to Probe,
but is an important optimization. It is based on the observation
that a witness packet is always resolved by some rule with
decision “false” in Y .

In division, we choose any rule Rj in Y with decision
“false”. We then create the projection Y/Rj . Finally, we

remove from Y/Rj all the other rules (i.e. other than Rj) with
decision “false”. The resulting policy is the “slice” Yj .

If Rj resolves packet p in Y , it will also resolve p in Y/Rj ,
and in Yj .

Thus, after division, we need only apply Probe to all the
slices of Y , rather than Y itself; iff there is a witness packet,
it will be resolved to “false” by some slice. As the slices are
usually very much smaller than Y , this greatly speeds up the
algorithm; however, it does not improve the theoretical bound
of O(nd) time.

Now we consider the probable impact of the width index
(allprob, oneprob) on the Probe algorithm.

As discussed for FDDs in Section IV, a high value of
oneprob should cause most rules to not overlap with each other
or with the property, leading to very small projected slices
Yj/P and thus fast performance.

A large value of allprob is likely to result in short slices and
projections, as a covering rule is quickly found. It should also
ensure that the number of distinct values in the sets S1, S2..Sd

is relatively small (if the rules are very wide, the end values of
intervals in the projection will usually be the end values of the
intervals specified in the property). Thus, our intuition is that
high values of oneprob as well as allprob should correspond
to good performance.

In the next section, we present our experimental measure-
ments of the actual response of PaNeL, FDD, and Probe to
changes in width index.

VI. EXPERIMENTAL RESULTS

In this section, we discuss our implementations of PaNeL,
FDD and Probe, and note how their performance is affected
by changes in width index.

A. Experiment 1: PaNeL

As the developers of PaNeL, we used the reference im-
plementation, which is coded in XMT-C and runs on the
XMT parallel machine. (XMT-C is almost identical to C; the
only non standard command used in the code for PaNeL is
‘spawn’.) For timing, we use the built-in simulator macro,
xmt_readtimer32(time1), which when called loads the
(32-bit) cycle count into integer time1.

In our experiments, we used rules with 5 fields,
each of which has the domain [0, 65535]. The length
of the policy was varied from 1000 to 10000 rules,
and the width index (allprob, oneprob) was varied as
(0, 0), (0, 20)..(0, 100), (20, 0), ..(80, 0), (80, 20). (Clearly, the
case (100, 0) is trivial: all packets are resolved by the first
rule.) For each length of policy, we tested 100 random packet
resolutions against 10 distinct policies and reported the average
time.

The general trend seen in our results is that, as expected,
packet resolution is much faster with high values of allprob
- PaNeL only pulls ahead for allprob values below 40. Also,
resolution is slower for higher values of oneprob, as more rules
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Fig. 3. Resolution time: Policy of 1000 rules

Fig. 4. Resolution time: Policy of 4000 rules

on average need to be tried before one of them resolves a
packet.

PaNeL shows a relatively flat response. There is some initial
decrease in resolution time as allprob increases and also as
oneprob decreases, but it becomes quite flat for values of
allprob beyond 20. Also, PaNeL with a large step size shows
a flatter response than with a small step size. Indeed, for the
smallest policies, with length 1000, PaNeL is perfectly flat
(exactly as expected, as the step size is 1000, and the time
required is constant: the time to process one batch of 1000
rules in parallel, and find the first match).

B. Experiment 2: Firewall Decision Diagrams

Our second set of experiments involved developing an
implementation of Firewall Decision Diagrams, and checking

Fig. 5. Firewall Decision Diagrams: Size

Fig. 6. Firewall Decision Diagrams: Time

the size as well as the time required. We initially started with
policy sizes of 100, 200..1000 but our python-2.7 implemen-
tation consistently ran out of memory and crashed on 8 GB
workstations. To be able to complete our experiment for all
values of width index, i.e. (0, 0), ..(0, 100), (20, 0)..(80, 20),
we used small policies of length 8, 16, and 32 rules. For each
data point, we took the average values for FDDs generated
from 100 random policies.

Our results are presented in Figure 5 and Figure 6. As may
be expected, the two figures are extremely similar, and follow a
clearly visible pattern. The space and time requirement curves
rise to a maximum at allprob = 40, and then fall for higher
values. Also, both graphs fall steadily with increasing oneprob;
the drop seems gentle and linear, but the z axis in the figures
is logarithmic, so in practice there is an exponential increase
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Fig. 7. Probe: Time

in FDD size as oneprob becomes smaller.

We conclude that most likely, in the earlier successful
studies on FDD [8] which use policies of as much as 660
rules, the value of oneprob was quite high for the policies
used in the experiment. For the sake of completeness, we then
performed a small test with a width index of (0, 90) for policies
of 100, 200..800 rules, taking average values over 10 policies
of each length.

Our results are as follows.

Rules Size (nodes) Time (sec)
100 15981 0.52
200 78249 4.77
300 185237 20.9
400 401176 116
500 670664 182
600 934651 299
700 1454927 1516
800 2124602 2504

These results are in reasonable agreement with the values
reported by earlier researchers, when we adjust for implemen-
tation differences (Python is approximately 200 to 250 times
slower than C).

C. Experiment 3: Probe

Our final set of experiments were with the Probe algorithm
for policy verification, implemented in plain C. (As Probe is
very fast and runs in milliseconds, we used the non-ANSI
clock() function rather than time(), which has only second
level resolution.) As in all our experiments, width index was
varied from (0, 0), (0, 20)..(0, 100), (20, 0)..(80, 20). The pol-
icy length was varied as 1000, 2000..10000 rules. We took the
average of 10, 000 readings for every point in our experiments.

Our results can be seen in Figure 7. The general shape of
the graph seems quite similar to the graph for serial resolution

in Figure 3; there is a very pronounced effect of the time
decreasing as allprob increases.

oneprob does not have such a clear effect; increase in
oneprob causes a decrease in the running time when allprob is
very high or very low, but affects the time more irregularly for
moderate values of allprob. We were surprised that oneprob
has such a small effect, and investigated the working of the
algorithm in more detail. We suggest that the reason for the
observed behavior is that oneprob can only become large when
allprob is small; in these cases, it is quite rare that two rules
intersect with themselves and also with the given policy - a
very large majority of projected slices are extremely small, and
have only 1 to 3 rules. Making the rules “thin” by increasing
oneprob has very little additional effect.

We believe the experimental evidence clearly demonstrates
the importance of the width index in the study of policies; in
particular, allprob has a powerful effect on packet resolution
as well as Probe, and oneprob on Firewall Decision Diagrams.

VII. RELATED WORK

Our work in this paper contributes to the study of policies,
their operation and verification. Owing to the practical impor-
tance of policies, there exists a considerable body of work
devoted to their study; in this section, we discuss how this
paper fits into the context of this research.

The first and most obvious area related to our work is the
design of algorithms and data structures for fast packet pro-
cessing (i.e. resolution) as well as for verification of policies.
A wide variety of specialized data structures have been used
to represent policies, notably tries [9] and lookup-table based
solutions by Waldvogel [10] and Gupta [11]. As preprocessing
can be expensive, solutions have been developed by Suri [12]
using B-trees, and by Sahni and Kim [13] using red-black
trees and skip lists; these solutions allow fast update, and also
perform (longest prefix) matching in O(log n) time.

We demonstrate that the width index has a dramatic effect
on the size of one such structure, the firewall decision diagram
[5]. Indeed, we argue that it is possible to predict from the
width index (and the length) of a policy, whether it is likely
to have a decision diagram of tractable size. (Exceptions are
possible; for example, a policy consisting entirely of repetitions
of the same rule will have a very simple decision diagram -
a linked list - irrespective of its width index and its length.
However, we believe that such exceptions are very unlikely to
occur in practice.) The question immediately follows whether
width index is also an important metric for predicting the
complexity of other specialized data structures, as mentioned
above. We intend to explore this direction in future work.

This paper grew out of our work on fast resolution, dis-
cussed in Section III, and therefore also contributes to another
area of research: the study of high-performance architecture
and its application to packet resolution. Several current sys-
tems, such as backbone routers, make use of special hardware
- ternary content addressable memory [3], ordinary RAM,
pipelining systems [14], and so on; the goal is to improve the
performance of policies. Our experiments with PaNeL show
that width index can be the determining factor in how fast a
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policy implementation performs; while PaNeL is very good for
policies with low values of allprob, the serial implementation
is superior as allprob becomes high. In the current literature,
testing is performed by varying the length of the policy, but our
results show that this is insufficient; which of two approaches
is better, may depend on the width rather than the length of
the policy.

This result is not limited to choosing an implementation
for a policy; our experiments demonstrate that the width index
of the policy is an important factor in choosing an algorithm
for verification or optimization, as well. More generally, the
analysis of policies includes the study of anomalies [15], inter-
rule conflicts [16], redundancies, and so on. For example,
Frantzen [17] provides a framework for understanding the
vulnerabilities in a firewall, and Blowtorch [18] is a framework
to generate packets for testing. It may be noted that Probe
[7], one of the algorithms we show to be strongly affected
by width index, has also been used for policy optimization by
removing redundant rules [19]. It seems very probable that the
width index of the analyzed policy is an important factor in
the complexity of these algorithms also. We suggest that width
index is a metric of considerable general interest, and plan
to extend our study of its impact on policy specifications and
implementations in our future work.

VIII. CONCLUSION

Policies are used in both routing and filtering of packets,
and are thus critical components of network infrastructure. In
this paper, we make two contributions to the theory of policies
and their complexity. Our first contribution is to define the
“width index”, a new metric for the complexity of a policy.
Width index is very easy to compute (one O(nd)-time pass
through the policy is sufficient to count the number of fields
in rules set to single values or to “All”), and can, as we
demonstrate experimentally, have a dramatic effect on the
behavior of algorithms that deal with policies. In particular,
algorithms such as FDD, which are not only well studied but
widely used in practice, are intractable for policies with poor
values of width index. Thus, for our second contribution, we
propose an explanation for the “unreasonable effectiveness” of
such algorithms in practice (despite their O(nd) running time):
practical policies have tractable values of width index.

Our work with the width index suggests several problems
for further study. The idea of the index can be extended
to be more precise - for example, by specifying the width
index field by field (a policy with width index (100, 0) for a
128-bit field like IPv6 address, and (0, 0) for some 1-bit field,
say protocol, may behave differently than one with (0, 0) for
address and (100, 0) for protocol). On the other hand, perhaps
it can be made more simple; the index consists of the two
separate measures allprob and oneprob, which are important
for different cases, and it would be interesting to see if it can
be expressed as a single one. Another possible line of attack
would be to examine other metrics, such as how many other
rules the average rule in a policy overlaps, and their relationship
to the width index.

As our own next step, we intend to study the impact of
width index on further algorithms and data structures in policy
research, such as FDD compression by Bit Weaving [8]. We

hope that, by making use of the width index, we will be able
to develop tighter theoretical bounds than the current O(nd)
bound for policy verification and optimization algorithms.
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