Troubleshooting Blackbox SDN Control Software With
Minimal Causal Sequences

Colin Scott

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-57
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-57.html

May 8, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Many thanks to the STS team for making this thesis possible: Andreas
Wundsam,

Barath Raghavan, Aurojit Panda, Zhi Liu, Sam Whitlock, Ahmed
El-Hassany, Andrew Or, Jefferson Lai, Eugene Huang, Hrishikesh Acharya,
and

Kyriakos Zarifis.

Thanks also to Shivaram Venkataraman, Justine Sherry, Radhika Mittal,

Teemu
Koponen, and Peter Bailis for providing feedback on earlier versions of this

text.

Most importantly, huge thanks to Scott Shenker for putting up with me!

Troubleshooting Blackbox SDN Control Software
With Minimal Causal Sequences

by Colin Scott

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Scott Shenker
Research Advisor

(Date)

Sylvia Ratnasamy
Second Reader

(Date)

Abstract

Software bugs are inevitable in software-defined networking control software, and
troubleshooting is a tedious, time-consuming task. In this thesis we discuss how
to improve control software troubleshooting by presenting a technique for auto-
matically identifying a minimal sequence of inputs responsible for triggering a
given bug, without making assumptions about the language or instrumentation of
the software under test. We apply our technique to five open source SDN control
platforms—Floodlight, NOX, POX, Pyretic, ONOS—and illustrate how the minimal
causal sequences our system found aided the troubleshooting process.

Acknowledgments
Many thanks to the STS team for making this thesis possible: Andreas Wundsam,
Barath Raghavan, Aurojit Panda, Zhi Liu, Sam Whitlock, Ahmed El-Hassany, An-
drew Or, Jefferson Lai, Eugene Huang, Hrishikesh Acharya, and Kyriakos Zarifis.

Thanks also to Shivaram Venkataraman, Justine Sherry, Radhika Mittal, Teemu Ko-
ponen, and Peter Bailis for providing feedback on earlier versions of this text.

Most importantly, huge thanks to Scott Shenker for putting up with me!

Contents

1 Introduction

2 Background

3 Problem Definition

4 Approach
4.0.1
4.0.2
4.0.3

Searching for Subsequences
Searching for Timings
Complexity e

S Systems Challenges

5.04
5.0.5
5.0.6
5.0.7
5.0.8
5.09
5.0.10

6 Evaluation
6.0.11
6.0.12
6.0.13
6.0.14
6.0.15
6.0.16
6.0.17
6.0.18

Coping with Non-Determinism
Mitigating Non-Determinism
Checkpointing o
Timing Heuristics
Root Causing Tools
Scaling and Parallelization
Limitations

NewBugs.
Knownbugs
Syntheticbugs
Overall Results & Discussion
Coping with Non-determinism
Instrumentation Complexity
Scalability
Parameters

7 Discussion

8 Related Work

9 Conclusion

36

38

40

1 Introduction

Software-defined networking (SDN) proposes to simplify network management by
providing a simple logically-centralized API upon which network management pro-
grams can be written. However, the software used to support this API is anything
but simple: the SDN control plane (consisting of the network operating system and
higher layers) is a complicated distributed system that must react quickly and cor-
rectly to failures, host migrations, policy-configuration changes and other events.
All complicated distributed systems are prone to bugs, and from our first-hand fa-
miliarity with five open source controllers and three major commercial controllers
we can attest that SDN is no exception.

When faced with symptoms of a network problem (e.g. a persistent loop) that
suggest the presence of a bug in the control plane software, software developers
need to identify which events are triggering this apparent bug before they can begin
to isolate and fix it. This act of “troubleshooting” (which precedes the act of de-
bugging the code) is highly time-consuming, as developers spend hours poring over
multigigabyte execution traces.! Our aim is to reduce effort spent on troubleshoot-
ing distributed systems like SDN control software, by automatically eliminating
events from buggy traces that are not causally related to the bug, producing a “min-
imal causal sequence” (MCS) of triggering events.

Our goal of minimizing traces is in the spirit of delta debugging [58], but our
problem is complicated by the distributed nature of control software: our input is
not a single file fed to a single point of execution, but an ongoing sequence of events
involving multiple actors. We therefore need to carefully control the interleaving
of events in the face of asynchrony, concurrency and non-determinism in order to
reproduce bugs throughout the minimization process. Contrary to deterministic re-
play approaches, we strive to explore divergent execution paths. Crucially, we aim

I'Software developers in general spend roughly half (49% according to one study [21]) of their
time troubleshooting and debugging, and spend considerable time troubleshooting bugs that are
difficult to trigger (the same study found that 70% of the reported concurrency bugs take days to
months to fix).

to minimize traces without making assumptions about the language or instrumenta-
tion of the control software.

We have built a troubleshooting system that, as far as we know, is the first
to meet these challenges (as we discuss further in §8). Once it reduces a given
execution trace to an MCS (or an approximation thereof), the developer embarks
on the debugging process. We claim that the greatly reduced size of the trace makes
it easier for the developer to figure out which code path contains the underlying bug,
allowing them to focus their effort on the task of fixing the problematic code itself.
After the bug has been fixed, the MCS can serve as a test case to prevent regression,
and can help identify redundant bug reports where the MCSes are the same.

Our troubleshooting system, which we call STS (SDN Troubleshooting Sys-
tem), consists of 23,000 lines of Python, and is designed so that organizations can
implement the technology within their existing QA infrastructure (discussed in §5);
over the last year we have worked with a commercial SDN company to integrate
STS. We evaluate STS in two ways. First and most significantly, we use STS to
troubleshoot seven previously unknown bugs—involving concurrent events, faulty
failover logic, broken state machines, and deadlock in a distributed database—that
we found by fuzz testing five controllers (Floodlight [16], NOX [23], POX [39],
Pyretic [19], ONOS [43]) written in three different languages (Java, C++, Python).
Second, we demonstrate the boundaries of where STS works well by finding MC-
Ses for previously known and synthetic bugs that span a range of bug types. In our
evaluation, we quantitatively show that STS is able to minimize (non-synthetic) bug
traces by up to 98%, and we anecdotally found that reducing traces to MCSes made
it easy to understand their root causes.

2 Background

Network operating systems, the key component of SDN software infrastructure,
consist of control software running on a replicated set of servers, each running a
controller instance. Controllers coordinate between themselves, and receive input
events (e.g. link failure notifications) and statistics from switches (either physical or
virtual), configuration and policy changes via a management interface, and possibly
packets from the dataplane. In response, the controllers issue forwarding instruc-
tions to switches. All input events are asynchronous, and individual controllers may
fail at any time. The controller instances may communicate with each other over the
dataplane network, or use a separate dedicated network. In either case, controllers
may become partitioned.

The goal of a network control plane is to configure the switch forwarding en-
tries so as to enforce one or more invariants, such as connectivity (i.e., ensuring that
a route exists between every endpoint pair), isolation and access control (i.e., var-
ious limitations on connectivity), and virtualization (i.e., ensuring that packets are
handled in a manner consistent with what would happen in the specified virtual net-
work). A bug causes an invariant to be violated. Invariants can be violated because
the system was improperly configured (e.g., the management system [2] or a human
improperly specified their goals to the SDN control plane), or because there is a bug
within the SDN control plane itself. In this thesis we focus on troubleshooting bugs
in the SDN control plane after it has been given a configuration.'

In commercial SDN development, software developers work with a team of QA
engineers whose job is to find bugs. The QA engineers exercise automated test
scenarios that involve sequences of external (input) events such as failures or policy
changes on large (software emulated or hardware) network testbeds. If they detect
an invariant violation, they hand the resulting trace to a developer for analysis.

The space of possible bugs is enormous, and it is difficult and time consuming

'This does not preclude STS from troubleshooting misspecified policies (misconfigurations) so
long as test invariants [31] are specified separately.

to link the symptom of a bug (e.g. a routing loop) to the sequence of events in the
QA trace (which includes both the external events and internal monitoring data),
since QA traces contain a wealth of extraneous events. Consider that an hour long
QA test emulating event rates observed in production could contain 8.5 network
error events per minute [22] and 500 VM migrations per hour [49], for a total of
8.5 - 60 + 500 ~ 1000 inputs.

3 Problem Definition

We represent the forwarding state of the network at a particular time as a config-
uration ¢, which contains all the forwarding entries in the network as well as the
liveness of the various network elements. The control software is a system consist-
ing of one or more controller processes that takes a sequence of external network
events I/ = @)—€)—Em) (e.g. link failures) as inputs, and produces a sequence of
network configurations C' = ¢y, ¢a, . . ., Cp.

An invariant is a predicate P over forwarding state (a safety condition, e.g. loop-
freedom). We say that configuration ¢ violates the invariant if P(c) is false, denoted
P(c).

We are given a log L generated by a centralized QA test orchestrator.! The log
L contains a sequence of events

T = _>@_>_>
which includes external events £ = @), €)-Em injected by the orchestrator, and
internal events I}, = @), @@ triggered by the control software (e.g. OpenFlow
messages). The external events include timestamps {(@), tx)} recorded from the
orchestrator’s clock.

A replay of log L involves replaying the external events Fj, possibly taking
into account the occurrence of internal events /;. We denote a replay attempt by
replay(t). The output of replay is a sequence of forwarding state configurations
Cr = ¢1,¢9,...,¢,. Ideally replay(r,) produces the same sequence of network
configurations that occurred originally, but as we discuss later this does not always
hold.

If the configuration sequence C;, = ¢, ¢o,...,c, associated with the log L
violated predicate P (i.e.3..cc,.P(c;)) then we say replay(t) = Cpr reproduces
that violation if C'r contains another faulty configuration (i.e.3;,cc, .?(éi)).

The goal of our work is, when given a log L that exhibited an invariant viola-
tion,! to find a small, replayable sequence of events that reproduces that invariant vi-

"We discuss how these logs are generated in §5.

olation. Formally, we define a minimal causal sequence (MCS) to be a sequence 7,
where the external events F); € 1), are a subsequence of E, such that replay ()
reproduces the invariant violation, but for all proper subsequences Iy of £, there
is no sequence 7y such that replay(7x) reproduces the violation. Note that an MCS
is not necessarily globally minimal, in that there could be smaller subsequences of
E;, that reproduce this violation, but are not a subsequence of this MCS.

We find approximate MCSes by deciding which events to eliminate and, more
importantly, when to inject external events. The key component of this system is a
mock network that can execute replay(). Our focus is on using the mock network to
generate random inputs (shown in Table 4.2), detecting bugs in control software,
and then finding MCSes that trigger them. We describe this process in the next
section.

4 Approach

Given a log L generated from testing infrastructure,! our goal is to find an approx-
imate MCS, so that a human can examine the MCS rather than the full log. This
involves two tasks: searching through subsequences of £, and deciding when to
inject external events for each subsequence so that, whenever possible, the invariant
violation is retriggered.

4.0.1 Searching for Subsequences

Checking random subsequences of £, would be one viable but inefficient approach
to achieving our first task. We do better by employing the delta debugging algo-
rithm [58], a divide-and-conquer algorithm for isolating fault-inducing inputs. In
our case, we use delta debugging to iteratively select subsequences of £, and replay
each subsequence with some timing 7'. If the bug persists for a given subsequence,
delta debugging ignores the other inputs, and proceeds with the search for an MCS
within this subsequence. The delta debugging algorithm is shown in Figure 4.1.
The input subsequences chosen by delta debugging are not always valid. Of
the possible inputs sequences we generate (shown in Table 4.2), it is not sensible
to replay a recovery event without a preceding failure event, nor to replay a host
migration event without modifying its starting position when a preceding host mi-
gration event has been pruned. Our implementation of delta debugging therefore
prunes failure/recovery event pairs as a single unit, and updates initial host loca-
tions whenever host migration events are pruned so that hosts do not magically
appear at new locations.! These two heuristics account for validity of all network

'Handling invalid inputs is crucial for ensuring that the delta debugging algorithm finds a min-
imal causal subsequence. The algorithm we employ [58] makes three assumptions about inputs:
monotonicity, unambiguity, and consistency. An event trace that violates monotonicity may contain
events that “undo” the invariant violation triggered by the MCS, and may therefore exhibit slightly
inflated MCSes. An event trace that violates unambiguity may exhibit multiple MCSes; delta debug-
ging will return one of them. The most important assumption is consistency, which requires that the

Input: T s.t. Ty is a trace and test(Ty) = X. Output: T, = ddmin(Ty) s.t. T, C Ty, test(T,) = X,
and 7}, is minimal.

ddmin(T,) = ddminy(Ty,) where

T, if |T}| = 1 (“base case™)

ddminy (T}, R Ise if test(T, U R) = X (“inT,”
dinin(72, 1) = | 0T) ceitien(TLUR) =X (n)

ddmins (TQ, R) else if test(T, UR) = X (“in T,”)

ddminy (T 1,1y U R) U ddminsy (T by, 1Y U R) otherwise (“interference”)

where fest(T) denotes the state of the system after executing the trace T', X denotes an invariant
violation,
T,CcT,, T,CT, T, UT, =T, T,NT, =0, and |T}| =~ |T3| ~ |T}|/2 hold.

Figure 4.1: Automated Delta Debugging Algorithm From [58].

events shown in Table 4.2. We do not yet support network policy changes as events,
which have more complex semantic dependencies.’

4.0.2 Searching for Timings

Simply exploring subsequences Eg of £, is insufficient for finding MCSes: the
timing of when we inject the external events during replay is crucial for reproducing
violations.
Existing Approaches. The most natural approach to scheduling external events is
to maintain the original wall-clock timing intervals between them. If this is able
to find all minimization opportunities, i.e. reproduce the violation for all subse-
quences that are a superset of some MCS, we say that the inputs are isolated. The
original applications of delta debugging [58] make this assumption (where a single
input is fed to a single program), as well as QuickCheck’s input “shrinking” [12]
when applied to blackbox systems like the synchronous part of telecommunications
protocols [4].

We tried this approach for minimizing our executions, but were rarely able to
reproduce invariant violations. As our case studies demonstrate (§6), this is largely
due to the concurrent, asynchronous nature of distributed systems; consider that

test outcome can always be determined. We guarantee neither monotonicity nor unambiguity, but
we guarantee consistency by ensuring that subsequences are always semantically valid by applying
the two heuristics described above. Zeller wrote a follow-on paper [59] that removes the need for
these assumptions, but incurs an additional factor of n in complexity in doing so.

2If codifying the semantic dependencies of policy changes turns out to be difficult, one could
just employ the more expensive version of delta debugging to account for inconsistency [59].

10

the network can reorder or delay messages, or that controllers may process mul-
tiple inputs simultaneously. Inputs injected according to wall-clock time are not
guaranteed to coincide correctly with the current state of the control software.

We must therefore consider the internal events of the control software. To de-
terministically reproduce bugs, we would need visibility into every I/O request and
response (e.g. clock values or network messages), as well as all thread scheduling
decisions for each controller. This information is the starting point for thread sched-
ule minimization techniques, which seek to minimize thread interleavings leading
up to race conditions. These approaches involve iteratively feeding a single input
(the thread schedule) to a single entity (a deterministic scheduler) [11, 13,28], or
statically analyzing feasible thread schedules [26].

A crucial constraint of these approaches is that they must keep the inputs fixed;
that is, the controller behavior must depend uniquely on the thread schedule. Other-
wise, the controllers may take a divergent code path. If this occurs some processes
might issue a previously unobserved I/O request, and the replayer will not have
a recorded response; worse yet, a divergent process might deschedule itself at a
different point than it did originally, so that the remainder of the recorded thread
schedule is unusable to the replayer (since the original preemption points may no
longer be executed).

By fixing the inputs, these approaches are forced to stay on the original code
path, and are unable to find alternate paths that still trigger the invariant violation.
They can only indirectly minimize inputs by truncating thread executions (i.e. caus-
ing them to exit early), or by removing threads that are entirely extraneous. They
consequently strive for a subtly different goal than ours: minimization of thread
context switches rather than input events.

With additional information obtained by program flow analysis [27,34,50] how-
ever, the inputs no longer need to be fixed. The internal events considered by
these program flow reduction techniques are individual instructions executed by
the programs (obtained by instrumenting the language runtime), in addition to I/O
responses and the thread schedule. With access to the instruction-level execution,
they can compute program flow dependencies, and thereby remove input events
from anywhere in the trace as long as they can prove that doing so cannot possibly
cause the faulty execution path (i.e. the program slice) to diverge.

While program flow reduction is able to minimize inputs rather than thread con-
text switches, these techniques are still not able to find alternate states that still trig-
ger the invariant violation. They are also overly conservative in removing inputs
(e.g. EFF takes the transitive closure of all possible dependencies [34]) causing
them to miss opportunities to remove dependencies that actually semantically com-

11

mute.

Allowing Divergence. Our approach is to dynamically respond to I/O requests
during minimization rather than recording all I/O requests and thread scheduling
decisions. This has several advantages. Unlike the other approaches, we can find
shorter alternate code paths that still trigger the invariant violation, since we are
not constrained to executing the exact code path from the original run. Previous
best-effort execution minimization techniques [14, 53] also allow alternate code
paths, but do not systematically consider concurrency and asynchrony.®> We also
avoid the runtime overhead of recording all I/O requests and later replaying them
(e.g. EFF incurs roughly 10x slowdown during replay due to the overhead of code
tracing [34]). Lastly, we avoid the extensive effort required to instrument the con-
trol software’s language runtime, needed by the other approaches to implement a
deterministic thread scheduler, interpose on syscalls, or perform program flow anal-
ysis. By avoiding assumptions about the language of the control software, we were
able to easily apply our system to five different control platforms written in three
different languages.*

Accounting for Interleavings. To reproduce the invariant violation (whenever
Eg is a superset of an MCS) we need to inject each input event (@) only af-
ter all other events, including internal events triggered by the control software it-
self, that precede it in the happens-before relation [33] from the original execution
(i |7 — @}) have occurred [51].

The internal events we consider are (a) message delivery events, either between
controllers (e.g. database synchronization messages) or between controllers and
switches (e.g. OpenFlow commands), and (b) state transitions within controllers
(e.g. a backup node deciding to become master). Our test orchestrator obtains vis-
ibility into (a) by interposing on all messages within the test environment (to be
described in §5). It optionally obtains partial visibility into (b) by instrumenting
controller software with a simple interposition layer (to be described in §5.0.5). By
virtue of managing inputs and message deliveries from a central location, we are
able to totally-order the event trace 7.

Note that we do not control the occurrence of internal events, and therefore do
not attempt to minimize them. Crucially though, we need to ensure that the ordering
of input and internal events during replay() of each subsequence is consistent with
the happens-before relation, so that we can report invariant violations (minimization

3Park et al. [45] also reproduce multithreaded executions in a best-effort fashion (allowing for
alternate code paths), but do not minimize the execution or consider event modifications.
4Some of the controllers actually comprise multiple languages.

12

| Internal message | Masked values \

OpenFlow messages xac id, cookie, buffer id, stats
packet_out/in payload | all values except src, dst, data
Log statements varargs parameters to printf

Table 4.1: Internal messages and their masked values.

opportunities) to delta debugging as often as possible. To meet this requirement our
test orchestrator may use its interposition on messages to reorder or drop messages
as necessary during replay.

Maintaining the happens-before relation from the original trace (which repro-

duces the violation) throughout replay of subsequences of the trace (which may or
may not reproduce that violation) involves three issues: coping with syntactic dif-
ferences in internal events across runs, handling internal events from the original
execution that may not occur after pruning, and dealing with new internal events
that were not observed at all in the original execution.
Functional Equivalence. Internal events may differ syntactically (e.g. sequence
numbers of control packets may all differ) when replaying a subsequence of the
original log. We observe that many internal events are functionally equivalent, in
the sense that they have the same effect on the state of the system with respect
to triggering the invariant violation (despite syntactic differences). For example,
flow_mod messages may cause switches to make the same change to their for-
warding behavior even if their transaction ids differ.

We leverage this observation by defining masks over semantically extraneous
fields of internal events.® These masks only need to be specified once, and can later
be applied programmatically to event traces.

We show the fields we mask in Table 4.1. We consider an internal event i’ ob-

served in the replay equivalent (in the sense of inheriting all of its happens-before
relations) to an internal event ¢ from the original log if and only if all unmasked
fields have the same value and 7 occurs between i"’s preceding and succeeding in-
puts in the happens-before relation.
Handling Absent Internal Events. Some internal events from the original log
that causally “happen before” some external input may be absent when replaying
a subsequence of that log. For instance, if we prune a link failure event, then the
corresponding link failure notification will never arise.

We handle this by attempting to infer the presence of internal events before we
replay each subsequence. Our algorithm (called PEEK()) for inferring the presence

>One consequence of applying masks is that bugs involving masked fields are outside the
purview of our approach.

13

| Input Type | Implementation
Switch failure/recovery TCP teardown
Controller failure/recovery | SIGKILL
Link failure/recovery ofp_port_status
Controller partition iptables

Dataplane packet injection

Network namespaces

Dataplane packet drop

Dataplane interposition

Dataplane packet delay

Dataplane interposition

Host migration

ofp_port_status

Control message delay

Controlplane interposition

Non-deterministic TCAMs

Modified switches

Table 4.2: Input types currently supported by STS.

procedure PEEK (input subsequence)
inferred < []
for e; in subsequence
checkpoint system
inject e;
A |ejr.time — ej.time| + €
record events for A seconds
matched < original events & recorded events
inferred < inferred + [&] + matched
restore checkpoint
return in ferred

Figure 4.2: PEEK determines which internal events from the original sequence oc-
cur for a given subsequence.

of internal events is depicted in Figure 4.2. The algorithm injects each input, records
a checkpoint® of the network and the control software’s state, allows the system to
proceed up until the following input (plus a small time ¢), records the observed
events, and matches the recorded events with the functionally equivalent internal
events observed in the original trace.’

Handling New Internal Events. The last possible change induced by pruning is
the occurrence of new internal events that were not observed in the original log.
New events present multiple possibilities for where we should inject the next input.
Consider the following case: if i» and i3 are internal events observed during replay
that are both in the same equivalence class as a single event 7; from the original run,

®We discuss the implementation details of checkpointing in 5.0.6.
"In the case that, due to non-determinism, an internal event occurs during PEEK() but does not
occur during replay, we time out on internal events after € seconds of their expected occurrence.

14

we could inject the next input after ¢ or after is.

In the general case it is always possible to construct two state machines that
lead to differing outcomes: one that only leads to the invariant violation when we
inject the next input before a new internal event, and another only when we inject
after a new internal event. In other words, to be guaranteed to traverse any existing
suffix that leads to the invariant violation, we must recursively branch, trying both
possibilities for every new internal event. This implies an exponential number of
possibilities to be explored in the worst case.

Exponential search over these possibilities is not a practical option. Our heuris-

tic when waiting for expected internal events is to proceed normally if there are new
internal events, always injecting the next input when its last expected predecessor
either occurs or times out. This ensures that we always find suffixes that contain a
subset of the (equivalent) original internal events, but leaves open the possibility of
finding divergent suffixes that lead to the invariant violation.
Recap. We combine the above heuristics to replay each subsequence chosen by
delta debugging: we compute functional equivalency for each internal event inter-
cepted by our interposition layer, we invoke PEEK() to infer absent internal events,
and with these inferred causal dependencies we replay the subsequence, waiting to
inject each input until each of its (functionally equivalent) predecessors have oc-
curred while allowing unexpected messages through immediately.

4.0.3 Complexity

The delta debugging algorithm terminates after 2(logn) invocations of replay in
the best case, and O(n) in the worst case, where n is the number of inputs in the
original trace [58]. Each invocation of replay takes O(n) time (one iteration for
PEEK() and one iteration for the replay itself), for an overall runtime of 2(nlogn)
best case and O(n?) worst case replayed inputs. The runtime can be decreased
by parallelizing delta debugging: speculatively replaying subsequences in parallel,
and joining the results. Storing periodic checkpoints of the system state throughout
testing can also reduce runtime, as it allows us to replay starting from a recent
checkpoint rather than the beginning of the trace.

15

5 Systems Challenges

Thus far we have assumed that we are given a faulty execution trace generated by
a network testbed. We now provide an overview of how we use a testbed to obtain
traces, and then describe our system for minimizing them.

Obtaining Traces. All three of the commercial SDN companies that we know
of employ a team of QA engineers to fuzz test their control software on network
testbeds, as depicted in Figure 5.1, This fuzz testing infrastructure consists of the
control software under test, the network testbed (which may be software or hard-
ware), and a centralized test orchestrator that chooses input sequences, drives the
behavior of the testbed, and periodically checks invariants, and manages log files.
When a bug is discovered, an engineer triages it and then sends logs to a developer
for further troubleshooting.

We do not have access to such a QA testbed, and instead built our own. Our
testbed mocks out the control plane behavior of network devices in lightweight
software switches and hosts (with support for minimal data plane forwarding). We
then run the control software on top of this mock network and connect the software
switches to the controllers. The mock network manages the execution of events
from a single location, which allows it to record a serial event ordering. This de-
sign is similar to production software QA testbeds, and is depicted in Figure 5.2.
One distinguishing feature of our design is that the mock network interposes on all
communication channels, allowing it to delay, drop, or reorder messages as needed
to induce failure modes that might be seen in real, asynchronous networks.

We use our mock network to perform testing on controllers to find bugs. Most
commonly we generate random input sequences based on event probabilities that
we assign (cf. §6.0.18), and periodically check the network for invariant violations.'
We also run the mock network interactively so that we can examine the state of the
network and follow our intuition to induce event orderings that we believe may

"We currently support the following invariants: (a) all-to-all reachability, (b) loop freeness, (c)
blackhole freeness, (d) controller liveness, and (e) POX ACL compliance.

16

Ctrir1 | =====" Ctrir 2
. : QA Test

. swil i Orchestrator

Fuzzer

Invariant Checker

Log Manager

Host 1 Host 2

Figure 5.1: Typical QA testbed. A centralized test orchestrator injects inputs and
checks invariants

Controller 1 Controller N

Mock Network @: Interposition

Figure 5.2: STS runs mock network devices, and interposes on all communication
channels.

trigger bugs.

Performing Minimization. After discovering an invariant violation of interest,
we apply delta debugging to minimize the recorded trace. We use the testing in-
frastructure itself to replay() the events in each intermediate subsequence. Dur-
ing replay() the mock network enforces event orderings as needed to maintain the
original happens-before relation, by using its interposition on message channels
to manage the order in which (functionally equivalent) messages are let through,
and waiting until the appropriate time to inject inputs. For example, if the original
trace included a link failure preceded by the arrival of a heartbeat message from the
controller, during replay() the mock network waits until it observes a functionally
equivalent ping probe to arrive, allows the probe through, then tells the switch to

17

fail its link.

STS is our realization of this system and is implemented in more than 23,000

lines of Python in addition to the Hassel network invariant checking library [31].
STS also optionally makes use of Open vSwitch [46] as an interposition point for
messages sent between controllers. We have made the code for STS publicly avail-
able at ucb-sts.github.com/sts.
Integration With Existing Testbeds. In designing STS we aimed to make it possi-
ble for engineering organizations to implement the technology within their existing
QA test infrastructure. Organizations can add delta debugging to their test orches-
trator, and optionally add interposition points throughout the testbed to control event
ordering during replay. In this way they can continue running large scale networks
with the switches, middleboxes, hosts, and routing protocols they had already cho-
sen to include in their QA testbed.

We avoid making assumptions about the language or instrumentation of the soft-
ware under test in order to facilitate integration with preexisting software. Many
of the heuristics we describe below are approximations that might be made more
precise if we had more visibility and control over the system, e.g. if we could deter-
ministically specify the thread schedule of each controller.

5.0.4 Coping with Non-Determinism

Non-determinism in the execution of concurrent processes stems from differences
in system call return values, process scheduling decisions (which can even affect the
result of individual instructions, such as x86’s interruptible block memory instruc-
tions [15]), and asynchronous signal delivery. These sources of non-determinism
can affect whether STS is able to reproduce the original bug during replay.

Most testing systems, such as the QA testing frameworks we are trying to im-
prove, do not mitigate non-determinism. STS’s main approach to coping with non-
determinism is to replay each subsequence chosen by delta debugging multiple
times. If the non-deterministic bug occurs with probability p, we can model the
probability? that we will observe it within r replays as 1 — (1 — p)". This exponen-
tial works strongly in our favor; for example, even if the original bug is triggered in
only 20% of replays, the probability that we will not trigger it during an intermedi-
ate replay is approximately 1% if we replay 20 times per subsequence.’

2This probability could be improved by guiding the thread schedule towards known error-prone
interleavings [44,45].
3See §6.0.15 for an experimental evaluation of this model.

18

http://ucb-sts.github.com/sts

5.0.5 Mitigating Non-Determinism

When non-determinism acutely impacts replay, one might seek to prevent non-
determinism altogether. As discussed in §4.0.2 though, fully deterministic replay
techniques [15,20], force the minimization process to stay on the original code path,
and incur extensive runtime overhead.

We therefore do not implement full determinism. We do place STS in a position
to record and replay all network events in serial order, and ensure that all data
structures within STS were unaffected by randomness. For example, we avoid using
hashmaps that hash keys according to their memory address, and sort all list return
values.

We also optionally interpose on the controller software itself. Routing the
gettimeofday () syscall through STS helps ensure timer accuracy.*> When
sending data over multiple sockets, the operating system exhibits non-determinism
in the order it schedules I/O operations. STS optionally ensures a deterministic
order of messages by multiplexing all sockets onto a single true socket. On the
controller side STS currently adds a shim layer atop the control software’s socket
library,® although this could be achieved transparently with a libc shim layer [20].

STS may need visibility into the control software’s internal state transitions to
properly maintain happens-before relations during replay. We gain visibility by
making a small change to the control software’s logging library®: whenever a con-
trol process executes a log statement, which often indicates that an important state
transition is about to take place, we notify STS. Such coarse-grained visibility into
internal state transitions does not handle all cases, but we find it suffices in prac-
tice.” We can also optionally use logging interposition as a synchronization barrier,
by blocking the process when it executes crucial logging statements until STS ex-
plicitly tells the process that it may proceed.

If blocking was enabled during recording, we force the control software to block
at internal state transition points again during replay until STS gives explicit ac-
knowledgment.

4When the pruned trace differs from the original, we make a best-effort guess at what the return
values of these calls should be. For example, if the altered execution invokes gettimeofday ()
more times than we recorded in the initial run, we interpolate the timestamps of neighboring events.

>Only supported for POX and Floodlight at the moment.

Only supported for POX at the moment.

"We discuss this limitation further in §5.0.10.

19

5.0.6 Checkpointing

To efficiently implement the PEEK() algorithm depicted in Figure 4.2 we assume
the ability to record checkpoints (snapshots) of the state of the system under test.
We currently implement checkpointing for the POX controller® by telling it to
fork () itself and suspend its child, transparently cloning the sockets of the par-
ent (which constitute shared state between the parent and child processes, since the
socket state is managed by the kernel), and later resuming the child. This simple
mechanism does not work for controllers that use other shared state such as disk. To
handle other shared state one could checkpoint processes within lightweight Unix
containers [1]. For distributed controllers, one would also need to implement a
consistent cut algorithm [9], which is available in several open source implementa-
tions [3].

If developers do not choose to employ checkpointing, they can use our imple-
mentation of PEEK() that replays all inputs from the beginning of the execution,
thereby increasing replay runtime by a factor of n. Alternatively, they can avoid
PEEK() and solely use the event scheduling heuristics described in §5.0.7.

Beyond its use in PEEK(), snapshotting has three advantages. As mentioned
in §4.0.3, only considering events starting from a recent checkpoint rather than
the beginning of the execution decreases the number of events to be minimized.
By shortening the replay time, checkpointing coincidentally helps cope with the
effects of non-determinism, as there is less opportunity for divergence in timing.
Lastly, checkpointing can improve the runtime of delta debugging, since many of
the subsequences chosen throughout delta debugging’s execution share common
input prefixes.

5.0.7 Timing Heuristics

We have found a number of heuristics useful for ensuring that invariant violations
are consistently reproduced during replay. These heuristics may be used alongside
or instead of PEEK(). We evaluated the effectiveness of these heuristics using visu-
alization tools (described in §5.0.8) to compare replay executions with and without
the heuristics enabled.

Event Scheduling. If we had perfect visibility into the internal state transitions of
control software, we would be able to replay inputs at precisely the correct point in
the happens-before relation. Unfortunately this is impractical.

$We only use the event scheduling heuristics described in §5.0.7 for the other controllers.

20

We find that keeping the wall-clock spacing between replay events close to the
recorded timing helps (but does not alone suffice) to ensure that invariant violations
are consistently reproduced. When replaying events, we sleep () between each
event for the same duration that was recorded in the original trace, less the time it
takes to replay each event. Accounting for the extra time it takes to replay events
is especially important when we time out on internal events, or when input events
take a long time to inject.

Whitelisting keepalive messages. We observed during some of our experiments
that the control software incorrectly inferred that links or switches had failed during
replay, when it had not done so in the original execution. Upon further examination
we found in these cases that LLDP and OpenFlow echo packets periodically sent by
the control software were staying in STS’s buffers too long during replay, such that
the control software would time out on them. To avoid these differences in timing
we added an option to always pass through keepalive messages that mitigates the
issue. The limitation of this heuristic is that it cannot be used on bugs involving
keepalive messages.

Whitelisting dataplane events. Dataplane forward/drop events constitute a sub-
stantial portion of overall events. However, for many of the controller applications
we are interested in, dataplane forwarding is only relevant insofar as it triggers con-
trol plane events (e.g. host discovery). We find that allowing dataplane forward
events through by default, i.e. never timing out on them during replay, can greatly
decrease skew in wall-clock timing.

Using logging statements as barriers. We briefly experimented with using logging
statements within control software to manipulate its execution speed, for use in
the rare cases in which we observed high variability in the controllers’ response
time. Our technique is to cause our logging interposition layer to block the entire
controller process each time it issues a logging statement until STS gives it explicit
permission to proceed. We found that some care is needed to deal with unexpected
state transitions, since the controller process will block indefinitely until STS gives
it acknowledgment. We currently turn this heuristic off by default.

5.0.8 Root Causing Tools

Throughout our experimentation with STS, we often found that minimized event
traces alone were insufficient to pinpoint the root causes of bugs. We therefore
implemented a number of complementary root causing tools within STS, which we
use along with Unix utilities to help us complete the final stage of debugging. We
illustrate their use in §6.

21

OFRewind. STS supports an interactive replay mode similar to OFRewind [56]
that allows troubleshooters to query the state of the network throughout replay,
filter subsets of the events, check additional invariants, and even induce new events
that were not part of the original event trace. Similar to OFRewind, we do not run
concurrent controller processes while the user is interactively performing replay,
since proper replay across concurrent processes requires precise timing. Instead,
STS replays the exact OpenFlow commands from the original trace to the switches,
and creates mock TCP connections that drop

Packet Tracing. Especially for SDN controllers that react to flow events, we found
it useful to trace the path of individual packets throughout the network. STS in-
cludes tracing instrumentation similar to NetSight [25] for this purpose.
OpenFlow Reduction. The OpenFlow commands sent by controller software are
often somewhat redundant. For example, controllers may override routing entries,
allow them to expire, or periodically flush the contents of flow tables and later
repopulate them. STS includes a tool for filtering out such redundant messages
and displaying only those commands that are directly relevant to triggering invalid
network configurations.

Event Visualization. Understanding the timing of messages and internal state tran-
sitions is a crucial part of troubleshooting distributed systems. STS includes two
visualization tools designed to aid with this task. First, we include a tool to visual-
ize space-time diagrams [33] of event traces. Second, we include a tool to visually
highlight event ordering differences between multiple event traces, which is espe-
cially useful for comparing the behavior of intermediate delta debugging replays in
the face of acute non-determinism.

5.0.9 Scaling and Parallelization

When minimizing very large event traces we found that the garbage collector for
our mock network often became overwhelmed (causing the process to slow down
substantially) after replaying several subsequences, since each replay could occupy
gigabytes of memory with many small objects. After observing this behavior, we
modified STS to fork a process (either local or remote) for each subsequence chosen
by delta debugging, and gather the results of the replay via RPC; the OS cleans up
the forked process, eliminating garbage collection overhead. As an added benefit,
this architectural change allows us to support parallelized delta debugging across
multiple cores or machines.

22

5.0.10 Limitations

Having detailed the specifics of our approach we now clarify the scope of our tech-
nique’s use.

Partial Visibility. Our event scheduling algorithm assumes that it has visibility
into the occurrence of relevant internal events. For some controllers this may in-
volve substantial instrumentation effort beyond pre-existing log statements, though
as we show in our evaluation, most bugs we encountered can be minimized without
perfect visibility.

Non-determinism. Non-determinism is fundamental in networks. When non-
determinism is present STS (i) replays multiple times per subsequence, and (ii)
employs software techniques for mitigating non-determinism, but it may nonethe-
less output a non-minimal causal sequence. In the common case this is still better
than what developers had before, since developers generally do not have tools for
reproducing non-deterministic bugs. In the worst case STS leaves the developer
where they started: an unpruned log.

Lack of Guarantees. Due to partial visibility and non-determinism, we do not
provide guarantees on MCS minimality.

Troubleshooting vs. Debugging. Our technique is a troubleshooting tool, not a
debugger; by this we mean that our approach helps identify and localize inputs that
trigger erroneous behavior, but it does not directly identify which line(s) of code
cause the error.

Bugs Outside the Control Software. Our goal is not to find the root cause of in-
dividual component failures in the system (e.g. misbehaving routers, link failures).
Instead, we focus on how the distributed system as a whole reacts to the occurrence
of such inputs.

Interposition Overhead. Performance overhead from interposing on messages
may prevent STS from minimizing bugs triggered by high message rates.” Simi-
larly, STS’s design may prevent it from minimizing extremely large traces, as we
evaluate in §6.

Globally vs. Locally Minimal Input Sequences. Our approach is not guaranteed
to find the globally minimal causal sequence from an input trace, since this in-
volves enumerating the powerset of F (a O(2") operation). The delta debugging
algorithm we employ does provably find a locally minimal causal sequence [58],
meaning that if any input from the sequence is pruned, no invariant violation oc-
curs.

9 Although this might be mitigated with time warping [24].

23

Correctness vs. Performance. We are primarily focused on correctness bugs, not
performance bugs.

Bugs Found Through Fuzzing. We generate bugs primarily through fuzz testing,
not by finding them in operational traces. There is a substantial practical hurdle
in instrumenting operational systems to produce logs that can be injected into our
system, as discussed in §7.

Scaling. Our discussions with companies with large SDN deployments suggest
that scaling to the size of the large logs they collect will be a substantial challenge.
On the other hand, the fact that these logs are so large makes the need for finding
MCSes even more acute.

24

6 Evaluation

We first demonstrate STS’s viability in troubleshooting real bugs. We found seven
new bugs by fuzz testing five open source SDN control platforms: ONOS [43]
(Java), POX [39] (Python), NOX [23] (C++), Pyretic [19] (Python), and Flood-
light [16] (Java), and debugged these with the help of STS. Second, we demonstrate
the boundaries of where STS works well and where it does not by finding MCSes
for previously known and synthetic bugs that span a range of bug types encountered
in practice.

Our ultimate goal is to reduce developer effort spent on troubleshooting bugs.
As this is difficult to measure,' since developer skills and familiarity with code
bases differs widely, we instead quantitatively show how well STS minimizes logs,
and qualitatively relay our experience using MCSes to debug the newly found bugs.

We show a high-level overview of our results in Table 6.1, and illustrate in
detail how STS found MCSes in the rest of this section. Interactive visualizations
and replayable event traces for all of these case studies are publicly available at
ucb-sts.github.com/experiments.

6.0.11 New Bugs

Pyretic Loop. We discovered a loop when fuzzing Pyretic’s hub module, whose
purpose is to flood packets along a minimum spanning tree. After minimizing the
execution (runtime in Figure 6.1a), we found that the triggering event was a link
failure at the beginning of the trace followed some time later by the recovery of
that link. After roughly 9 hours over two days of examining Pyretic’s code (which
was unfamiliar to us), we found what we believed to be the problem in its logic for
computing minimum spanning trees: it appeared that down links weren’t properly
being accounted for, such that flow entries were installed along a link even though
it was down. When the link recovered, a loop was created, as the flow entries were

"We discuss this point further in §7.

25

http://ucb-sts.github.com/experiments

Bug Name Topology Runtime (s) | Input Size | MCS Size | MCS helpful?
Pyretic loop 3 switch mesh 266.2 36 2 | Yes

g || POX premature PacketIn 4 switch mesh 249.1 102 2 | Yes

2 || POX in-flight blackhole 2 switch mesh 641.1 46 7 | Yes

i POX migration blackhole 4 switch mesh 1796.0 29 3 | Yes

= || NOX discovery loop 4 switch mesh 4990.9 150 18 | Indirectly

z Floodlight loop 3 switch mesh 27930.6 117 13 | Yes
ONOS distributed database locking | 2 switch mesh N/A 1 1| N/A

§ Floodlight failover bug 2 switch mesh - 202 2 | Yes

S ONOS master election 2 switch mesh 6325.2 30 3| Yes

» || POX load balancer error checking 3 switch mesh 2396.7 106 24 (N+1) | Yes
Null pointer on rarely used codepath | 20 switch FatTree 157.4 62 2 | Yes

o Overlapping flow entries 2 switch mesh 1154 27 2 | Yes

€ || Delicate timer interleaving 3 switch mesh N/A 39 39 | No

< || Algorithm misimplementation 3 switch mesh 525.2 40 7 | Indirectly

UE; Multithreaded race condition 10 switch mesh 36967.5 1596 2 | Indirectly
Memory leak 2 switch mesh 15022.6 719 30 (M) | Indirectly
Memory corruption 4 switch mesh 145.7 341 2 | Yes

Table 6.1:

Overview of Case Studies.

still in place. The loop seemed to persist until Pyretic periodically flushed all flow
entries.

We filed a bug report along with a replayable MCS to the developers of Pyretic.
They found after roughly five hours of replaying the trace with STS that Pyretic told
switches to flood out all links before the entire network topology had been learned
(including the down link). By adding a timer before installing entries to allow for
links to be discovered, the developers were able to verify that the loop no longer ap-
peared. A long term fix for this issue is currently being discussed by the developers
of Pyretic.

POX Premature PacketIn. We discovered this bug accidentally During a partic-
ular fuzzing run, the 12_multi module failed unexpectedly with a KeyError.
The initial trace had 102 input events, and STS reduced it to an MCS of 2 input
events as shown in Figure 6.1b.

We repeatedly replayed the MCS while adding instrumentation to the POX
code. The root cause was a race condition in POX’s handshake state machine.
The OpenFlow standard requires a 2-message handshake. Afterwards, the switch
is free to send arbitrary messages. POX, however, requires an additional series of
message exchanges before considering the switch fully connected and notifying the
application modules of its presence via a SwitchUp event.

26

In this case, the switch was slow in completing the second part of the handshake,
causing the SwitchUp to be delayed. During this window, a PacketIn (LLDP packet)
was forwarded to POX’s di scovery module, which in turned raised a LinkEvent
to 12_multi, which then failed because it expected SwitchUp to occur first. We
verified with the lead developer of POX that is a true bug.

This case study demonstrates how even a simple handshake state machine can
behave unexpectedly and in a non-trivial manner that is hard to understand without
being able to repeat the experiment with a minimal trace. Making heavy use of the
MCS replay, a developer unfamiliar with the two subsystems was able to root-cause
the bug in “30 minutes.

120 50

» 40 a)
T
g © T 3C —
§ 20 E) 60 é 25 "—-L
5 5 40 5 20 L'_"_L,_
5 10 5 5
z 0 z 0 z 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 0 5 10 15 20 25 30 35 40
Number of Replays Executed Number of Replays Executed Number of Replays Executed
(a) Pyretic loop. (b) POX premature packet-in. (c) POX in-flight blackhole.
g 120 g 70 » 120 =
5 S . 5
2 100 l g 60 2 100
T L 7 % L s
£ 80 £ “"'-l S 80
g il g 40 =
5 oo 5 . L 5o —
s 40 5, 5 40
% 20 I_l % 10 é 20
: I :
0 5 10 15 20 25 0 5 10 15 20 25 30 35 40 0 50 100 150 200 250 300 350
Number of Replays Executed Number of Replays Executed Number of Replays Executed
(d) POX migration blackhole. (e) NOX discovery loop. (f) Floodlight loop.

Figure 6.1: Minimization results.

POX In-flight Blackhole. We discovered another bug after roughly 20 runs of ran-
domly generated inputs. We noticed a persistent blackhole while POX was boot-
strapping its discovery of link and host locations. There were 46 inputs in the initial
trace. The initial trace was affected by non-determinism and only replayed suc-
cessfully 15/20 times. We were able to reliably replay it by employing multiplexed
sockets, overriding gett imeofday (), and waiting on POX’s logging messages.
STS returned a 7 input MCS (runtime shown in Figure 6.1c).

We provided the MCS to the lead developer of POX. Primarily using the con-
sole output, we were able to trace through the code and identify the problem within
7 minutes, and were able to find a fix for the race condition within 40 minutes.
By matching the console output with the code, he found that the crucial triggering

27

events were two in-flight packets (set in motion by prior traffic injection events):
POX first incorrectly learned a host location as a result of the first in-flight packet
showing up immediately after POX discovered that port belonged to a switch-switch
link—apparently the code had not accounted for the possibility of in-flight packets
directly following link discovery—and then as a result the second in-flight packet
POX failed to return out of a nested conditional that would have otherwise pre-
vented the blackholed routing entries from being installed.

POX Migration Blackhole. We noticed after examining POX’s code that there
might be some corner cases related to host migrations. We set up randomly gener-
ated inputs, included host migrations this time, and checked for blackholes. Our ini-
tial input size was 115 inputs. STS produced a 3 input MCS (shown in Figure 6.1d):
a packet injection from a host (‘A’), followed by a packet injection by another host
(‘B’) towards A, followed by a host migration of A. This made it immediately clear
what the problem was. After learning the location of A and installing a flow from B
to A, the routing entries in the path were never removed after A migrated, causing
all traffic from B to A to blackhole until the routing entries expired.

NOX Discovery Loop. Next we tested NOX on a four-node mesh, and discovered a
routing loop between three switches within roughly 20 runs of randomly generated
inputs.

Our initial input size was 68 inputs, and STS returned an 18 input MCS. Our ap-
proach to debugging was to reconstruct from the minimized trace how NOX should
have installed routes, then compare how NOX actually installed routes. This case
took us roughly 10 hours to debug. Unfortunately the final MCS did not reproduce
the bug on the first few tries, and we suspect this is due to the fact NOX chooses
the order to send LLDP messages randomly, and the loop depends crucially on this
order. We instead used the console output from the shortest subsequence that did
produce the bug (21 inputs, 3 more than the MCS) to debug this trace.

The order in which NOX discovered links was crucial: at the point NOX in-
stalled the 3-loop, it had only discovered one link towards the destination. There-
fore all other switches routed through the one known neighbor switch. The links
adjacent to the neighbor switch formed 2 of the 3 links in the loop.

The destination host only sent one packet, which caused NOX to initially learn
its correct location. After NOX flooded the packet though, it became confused
about its location. One flooded packet arrived at another switch that was currently
not known to be attached to anything, so NOX incorrectly concluded that the host
had migrated. Other flooded packets were dropped as a result of link failures in the
network and randomly generated network loss. The loop was then installed when

28

the source injected another packet.

ONOS distributed database locking. When testing ONOS, a distributed open-
source controller, we noticed that ONOS controllers would occasionally reject switch
attempts to connect upon initialization. The initial trace was already minimized, as
the initial input was the single event of the switches connecting to the controllers
with a particular timing. When examining the logs, we found that the particular
timing between the switch connects caused both ONOS controllers to encounter a
“failed to obtain lock™ error from their distributed graph database. We suspect that
the ONOS controllers were attempting to concurrently insert the same key, which
causes a known error. We modified ONOS’s initialization logic to retry when in-
serting switches, and found that this eliminated the bug.

Floodlight loop. Next we tested Floodlight’s routing application. In about 30 min-
utes, our fuzzing uncovered a 117 input sequence that caused a persistent 3-node
forwarding loop. In this case, the controller exhibited significant non-determinism,
which initially precluded STS from efficiently reducing the input size. We worked
around this by increasing the number of replays per subsequence to 10. With this,
STS reduced the sequence to 13 input events in 324 replays and 8.5 hours (runtime
shown in Figure 6.1f).

We repeatedly replayed the 13 event MCS while successively adding instru-
mentation and increasing the log level each run. After about 15 replay attempts,
we found that the problem was caused by interference of end-host traffic with on-
going link discovery packets. In our experiment, Floodlight had not discovered an
inter-switch link due to dropped LLDP packets, causing an end-host to flap between
perceived attachment points.

While this behavior cannot strictly be considered a bug in Floodlight, the case-
study nevertheless highlights the benefit of STS over traditional techniques: by
repeatedly replaying a significantly minimized MCS, we were able to diagnose the
root cause—a complex interaction between the LinkDiscovery, Forwarding, and
DeviceManager modules.

6.0.12 Known bugs

In addition to our troubleshooting case studies, we evaluate STS’s ability to mini-
mize traces on a range of bug types, both known and synthetically injected by us.

Floodlight failover bug. We were able to reproduce a known problem in Flood-
light’s distributed controller failover logic [17] with STS. In Floodlight switches
maintain one hot connection to a master controller and several cold connections

29

to replica controllers. The master holds the authority to modify the configuration
of switches, while the other controllers are in backup mode and do not change the
switch configurations. If a link fails shortly after the master controller has died, all
live controllers are in the backup role and will not take responsibility for updating
the switch flow table. At some point when a backup notices the master failure and
elevates itself to the master role it will proceed to manage the switch, but without
ever clearing the routing entries for the failed link, resulting in a persistent black-
hole.

We ran two Floodlight controller instances connected to two switches, and in-
jected 200 extraneous link and switch failures, with the controller crash and switch
connect event? that triggered the blackhole interleaved among them. We were able
to successfully isolate the two-event MCS: the controller crash and the link failure.

ONOS master election bug. We reproduced another bug, previously reported in
earlier versions and later fixed, in ONOS’s master election protocol. If two adja-
cent switches are connected to two separate controllers, the controllers must decide
between themselves who will be responsible for tracking the liveness of the link.
They make this decision by electing the controller with the higher ID as the master
for that link. When the master dies, and later reboots, it is assigned a new ID. If
its new ID is lower than the other controllers’, both will incorrectly believe that
they are not responsible for tracking the liveness of the link, and the controller with
the prior higher ID will incorrectly mark the link as unusable such that no routes
will traverse it. This bug depends on initial IDs chosen at random, and ONOS is
not instrumented to support deterministic replay of random values. We mitigated
this inherent non-determinism by replaying each subsequence 5 times. With this
setting, STS was able to minimize the trace to 3 elements.

POX load balancer error checking. We are aware that POX applications do not
always check error messages sent by switches rejecting invalid packet forwarding
commands. We used this to trigger a bug in POX’s load balancer application: we
created a network where switches had only 25 entries in their flow table, and pro-
ceeded to continue injecting TCP flows into the network. The load balancer appli-
cation proceeded to install entries for each of these flows. Eventually the switches
ran out of flow entry space and responded with error messages. As a result, POX
began randomly load balancing each subsequent packet for a given flow over the
servers, causing session state to be lost. We were able to minimize the MCS for
this bug to 24 elements (there were two preexisting auxiliary flow entries in each

2We used a switch connect event rather than a link failure event for logistical reasons, but both
can trigger the race condition.

30

routing table, so 24 additional flows made the 26 (N+1) entries needed to overflow
the table). A notable aspect of this MCS is that its size is directly proportional to
the flow table space, and developers would find across multiple fuzz runs that the
MCS was always 24 elements.

6.0.13 Synthetic bugs

Lastly, we injected synthetic bugs across a range of bug types into POX. For space
reasons we only briefly describe these bugs.

Delicate timer interleaving. We injected a crash on a code path that was highly
dependent on the interleaving of internal timers triggered within POX. This is a
particularly hard case for STS, since we have little control of internal timers. We
were able to trigger the code path during fuzzing, but were unable to reproduce the
bug during replay after five attempts, and were left with the original 39 input trace.
This is the only case where we were unable to replay trace.

Algorithm misimplementation. We modified POX’s implementation of Floyd-
Warshall to create loops. We noticed that the MCS was inflated by at least two
events: a link failure and a link recovery that we did not believe were relevant to
triggering the bug we induced. The final MCS also was not replayable on the first
try. We suspect that these problems may have been introduced by the fact that the
routing implementation depended on the discovery module to find links in the net-
work, and the order in which these links are discovered is non-deterministic.

Overlapping flow entries. We ran two modules in POX: a capability manager
in charge of providing upstream DoS protection for servers, and a forwarding ap-
plication. The capabilities manager installed drop rules upstream for servers that
requested it, but these rules had lower priority than the default forwarding rules in
the switch. We were able to minimize 27 inputs to the two traffic injection inputs
necessary to trigger the routing entry overlap.

Null pointer on rarely used codepath. On a rarely used-code path, we injected
a null pointer exception, and were able to successfully minimize a fuzz trace of
62 events to the expected conditions that triggered that code path: control channel
congestion followed by decongestion.

Multithreaded race condition. We created a race condition between multiple
threads that was triggered by any packet 1/O, regardless of input. With 5 replays
per subsequence, we were able to minimize a 1596 input in 10 hours 15 minutes
to a replayable 2 element failure/recovery pair as an MCS. The MCS itself though
may have been somewhat misleading to a developer (as expected), as the race con-

31

dition was triggered randomly by any /O, not just these two inputs events.

Memory leak. We created a case that would take STS very long to minimize: a
memory leak that eventually caused a crash in POX. We artificially set the memory
leak to happen quickly after allocating 30 (M) objects created upon switch hand-
shakes, and interspersed 691 other input events throughout switch reconnect events.
The final MCS found after 4 hours 15 minutes was exactly 30 events, but it was not
replayable. We suspect this was because STS was timing out on some expected
internal events, which caused POX to reject later switch connection attempts.

Memory corruption. We simulated a case where the receipt of link failure notifica-
tion on a particular port causes corruption to one of POX’s internal data structures.
This corruption then causes a crash much later when the data structure is accessed
during the during corresponding port up. These bugs are often hard to debug, be-
cause considerable time can pass between the event corrupting the data structure
and the event triggering the crash, making manual log inspection or source level
debugging ineffective. STS proved effective in this case, reducing a larger trace to
exactly the 2 events responsible for the crash.

6.0.14 Overall Results & Discussion

We show our overall results in Table 6.1. We note that with the exception of ‘Del-
icate timer interleaving’, STS was able to significantly reduce the size of the input
traces. As described in the case studies, we were able to counter some sources of
non-determinism by replaying multiple times per subsequence and adding instru-
mentation to controllers.

The cases where STS was most useful were those where a developer would
have started from the end of the trace and worked backwards, but the actual root
cause lies many events in the past (e.g. the Memory corruption example). This
requires many re-iterations through the code and logs using standard debugging
tools (e.g. source level debuggers), and is highly tedious on human timescales. In
contrast, it was easy to step through a small event trace and manually identify the
code paths responsible for a failure.

Bugs that depend on fine-grained thread-interleaving or timers inside of the con-
troller are the worst-case for STS. This is not surprising, as they do not directly
depend on the input events from the network, and we do not directly control the
internal scheduling and timing of the controllers. The fact that STS has a diffi-
cult time reducing these traces is itself indication to the developer that fine-grained
non-determinism is at play.

32

Max replays Size of Total hours
per final
subsequence MCS
1 65 6.10
2 20 6.37
3 15 7.78
4 12 9.59
5 9 6.38
6 9 11.20
7 9 11.83
8 6 12.35
9 6 11.13
10 6 12.86

Table 6.2: Effectiveness of replaying subsequences multiple times in mitigating
non-determinism.

6.0.15 Coping with Non-determinism

Recall that STS optionally replays each subsequence multiple times throughout
delta debugging to mitigate the effects of non-determinism. We evaluate the effec-
tiveness of this approach on the minimization of a synthetic non-deterministic loop
created by Floodlight. Table 6.2 demonstrates that the size of the resulting MCS
decreases with the number of replays per subsequence. This suggests that replay-
ing each subsequence multiple times is effective in coping with non-determinism,
at the cost of increased runtime.

6.0.16 Instrumentation Complexity

For POX and Floodlight, we added shim layers to the controller software to redi-
rect gettimeofday (), interpose on logging statements, and demultiplex sock-
ets. For Floodlight we needed 722 lines of Java to obtain this indirection, and for
POX we needed 415 lines of Python.

6.0.17 Scalability

Mocking the network in a single process potentially prevents STS from triggering
bugs that only appear at large scale. We ran STS on large FatTree networks to

33

250 -

OpenFlow Handshakes X o

o 200 +5% Link Failures +
S Total Including Initialization ©

L +
o 150
[0
n
£
3 100 - %
E ®
Tosor ® ® % x

®
o_..umgj * K % |
0 500 1000 1500 2000 2500 3000

Number of Switches

Figure 6.2: Simulation time for bootstrapping FatTree networks, cutting 5% of
links, and processing the controller’s response.

see where these scaling limits exist. On a machine with 6GB of memory, we ran
POX as the controller, and measured the time to create successively larger FatTree
topologies, complete the OpenFlow handshakes for each switch, cut 5% of links,
and process POX’s response to the link failures. As shown in Figure 6.2, STS’s
processing time scales roughly linearly up to 2464 switches (a 45-pod FatTree). At
that point, the machine started thrashing, but this limitation could easily be removed
by running on a machine with >6GB of memory.

Note that STS is not designed for simulating high-throughput dataplane traffic;
we only forward what is necessary to exercise the controller software. In proac-
tive SDN setups, dataplane events are not relevant for the control software, except
perhaps for host discovery.

6.0.18 Parameters

We found throughout our experimentation that STS leaves open several parameters
that need to be set properly in order to effectively find and troubleshoot bugs.
Setting fuzzing parameters. STS’s fuzzer allows the user to set the rates different
event types are triggered at. In our experiments with STS we found several times
that we needed to set these parameters such that we avoided bugs that were not of
interest to developers. For example, in one case we discovered that a high dataplane
packet drop rate dropped too many LLDP packets, preventing the controller from
successfully discovering the topology. Setting fuzzing parameters remains an im-
portant part of experiment setup.

Differentiating persistent and transient violations. In networks there is a fun-

34

damental delay between the initial occurrence of an event and the time when other
nodes are notified of the event. This delay implies that invariant violations such
as loops or blackholes can appear before the controller(s) have time to correct the
network configuration. In many cases such transient invariant violations are not of
interest to developers. We therefore provide a threshold parameter in STS for how
long a invariant violation should persist before STS reports it as a problem. In gen-
eral, setting this threshold depends on the network and the invariants of interest.

Setting €. Our algorithm leaves an open question as to what value € should be set to.
We experimentally varied € on the POX in-flight blackhole bug. We found for both
cases that the number of events we timed out on while isolating the MCS became
stable for values above 25 milliseconds. For smaller values, the number of timed
out events increased rapidly. We currently set € to 100 milliseconds.

In general, larger values of € are preferable to smaller values (disregarding run-
time considerations), since we can always detect when we have waited too long
(viz. when a successor of the next input has occurred), but we cannot detect when
we have timed out early on an internal event that is in fact going to occur shortly
after.

35

7 Discussion

How much effort do MCSes really save? Based on conversations with engineers
and our own industrial experience, two facts seem to hold. First, companies ded-
icate a substantial portion of their best engineers’ time on troubleshooting bugs.
Second, the larger the trace, the more effort is spent on debugging, since humans
can only keep a small number of facts in working memory [41]. As one devel-
oper puts it, “Automatically shrinking test cases to the minimal case is immensely
helpful” [52].

Will this approach work on all controllers? We make limited assumptions about
the controller software in use. Three of the five platforms we investigated were
exercised with STS without any modifications. Limited changes to the controller
platforms (e.g. overriding gettimeofday ()) can increase replay accuracy fur-
ther. In general, we expect STS to support controllers conforming to OpenFlow 1.0.
Why do you focus on SDN? SDN represents both an opportunity and a challenge.
In terms of a challenge, SDN control software—both proprietary and open source—
is in its infancy, which means that bugs are pervasive.

In terms of an opportunity, SDN’s architecture facilitates the implementation of
systems like STS. The interfaces between components of the system (e.g. OpenFlow
for switches [40] and OpenStack Neutron for management [2]) are well-defined,
which is crucial for codifying functional equivalencies. Moreover, the control flow
of SDN control software repeatedly returns to a quiescent state after processing
inputs, which means that many inputs can be pruned.

Although we focus on SDN control software, we are currently evaluating our
technique on other distributed systems, and believe it to be generally applicable.
Enabling analysis of production logs. STS does not currently support minimiza-
tion of production (as opposed to QA) logs. Production systems would need to
include Lamport clocks on each message [33] or have sufficiently accurate clock
synchronization to obtain a happens-before relation. Inputs would also need to
need to be logged in sufficient detail for STS to replay a synthetic version. Finally,
without care, a single input event may appear multiple times in the distributed logs.

36

The most robust way to avoid redundant input events would be to employ perfect
failure detectors [8], which log a failure iff the failure actually occurred.

37

8 Related Work

Our primary contribution, a technique for interleaving events, made it possible
for us to apply input minimization algorithms (c¢f. Delta Debugging [58, 59] and
domain-specific algorithms [12,47,55]) to bugs in blackbox distributed systems.
We described the closest work to us, thread schedule minimization and program
flow reduction, in §4.0.2.

We characterize the other approaches taken by the troubleshooting literature as
(i) instrumentation (tracing), (ii) bug detection (invariant checking), (iii) replay, and
(iv) root cause analysis (of network device failures).

Instrumentation. Unstructured log files collected at each node are the most com-
mon form of diagnostic information. The goal of tracing frameworks [5, 10, 18, 25,
48] is to produce structured logs that can be easily analyzed, such as DAGs tracking
requests passing through the distributed system. An example within the SDN prob-
lem space is NetSight [25], which allows users to retroactively examine the paths
dataplane packets take through OpenFlow networks. Tools like NetSight allow de-
velopers to understand how, when, and where the dataplane broke. In contrast, we
focus on making it easier for developers to understand why the control software
misconfigured the network.

Bug Detection. With instrumentation available, it becomes possible to check ex-
pectations about the system’s state (either offline [36] or online [37]), or about the
paths requests take through the system [48]. Within the networking community, this
research is primarily focused on verifying routing tables [30-32, 38] or forwarding
behavior [60,61]. We use bug detection techniques (invariant checking) to guide
delta debugging’s minimization process.

It is also possible to infer performance anomalies by building probabilistic mod-
els from collections of traces [5, 10]. Our goal is to produce exact minimal causal
sequences without depending on probabilistic models, and we are primarily focused
on correctness instead of performance.

Model checkers [7,42] seek to proactively find bugs by analyzing all possible

38

code paths. After identifying a bug with model checking, finding a minimal code
path leading to it is straightforward. However, the testing systems we aim to im-
prove do not employ formal methods such as model checking, in part because model
checking usually suffers from exponential state explosion when run on large sys-
tems,! and because large systems often comprise multiple (interacting) languages,
which may not be amenable to formal methods. We are currently exploring the use
of model checking to provide provably minimal MCSes.

Replay. Crucial diagnostic information is often missing from traces. Record and
replay techniques [20, 35] instead allow users to step through (deterministic) exe-
cutions and interactively examine the state of the system in exchange for runtime
recording overhead. Within SDN, OFRewind [56] provides record and replay of
OpenFlow channels between controllers and switches. Manually examining long
system executions can be tedious, and our goal is to minimize such executions so
that developers find it easier to identify the problematic code through replay or other
means.

Root Cause Analysis. Without perfect instrumentation, it is often not possible
to know exactly what events are occurring (e.g. which network components have
failed) in a distributed system. Root cause analysis [29, 57] seeks to reconstruct
those unknown events from limited monitoring data. Here we know exactly which
events occurred, but seek to identify the minimal sequence of events that trigger a
particular bug.

It is worth mentioning another goal outside the purview of distributed systems,
but closely in line with ours: program slicing [54] is a technique for finding the
minimal subset of a program that could possibly affect the result of a particular
line of code, which can be applied to automatically generate minimal unit tests [6].
Our goal is to slice the temporal dimension of an execution rather than the code
dimension.

TFor example, NICE [7] took 30 hours to model check a network with two switches, two hosts,
the NOX MAC-learning control program (98 LoC), and five concurrent messages between the hosts.

39

9 Conclusion

SDN’s purpose is to make networks easier to manage. SDN does this, however,
by pushing complexity into SDN control software itself. Just as sophisticated com-
pilers are hard to write, but make programming easy, SDN control software makes
network management easier, but only by forcing the developers of SDN control
software to confront the challenges of asynchrony, partial failure, and other notori-
ously hard problems inherent to all distributed systems.

Current techniques for troubleshooting SDN control software are primitive; they
essentially involve manual inspection of logs in the hope of identifying the relevant
inputs. Here we developed a technique for automatically identifying a minimal
sequence of inputs responsible for triggering a given bug, without making assump-
tions about the language or instrumentation of the software. We believe our tech-
nique will be especially valuable for troubleshooting distributed controllers running
complex applications, which are just now becoming available to the public and the
broader research community.

We focused on SDN control software, but we believe our techniques are appli-
cable to general distributed systems. As distributed systems proliferate, we hope
that our technique helps ameliorate the dearth of tools in this important area.

40

Bibliography

[1] Linux kernel containers. 1inuxcontainers.ord.
[2] OpenStack Neutron. http://tinyurl.com/qj8ebuc.

[3] J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent Checkpointing
for Cluster Computations and the Desktop. IPDPS ’09.

[4] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing Telecoms Software
with Quviq QuickCheck. Erlang ’06.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for Request
Extraction and Workload Modelling. OSDI *04.

[6] M. Burger and A. Zeller. Minimizing Reproduction of Software Failures.
ISSTA ’11.

[7] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A NICE Way
to Test OpenFlow Applications. NSDI "12.

[8] T.Chandraand S. Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. JACM ’96.

[9] K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global
States of Distributed Systems. ACM TOCS ’85.

[10] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, O. Fox, and E. Brewer. Pinpoint:
Problem Determination in Large, Dynamic Internet Services. DSN ’02.

[11] J. Choi and A. Zeller. Isolating Failure-Inducing Thread Schedules. SIGSOFT
"02.

[12] K. Claessen and J. Hughes. QuickCheck: a Lightweight Tool for Random
Testing of Haskell Programs. ICFP *00.

41

linuxcontainers.org
http://tinyurl.com/qj8ebuc

[13] K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson, T. Arts, and
U. Wiger. Finding Race Conditions in Erlang with QuickCheck and PULSE.
ICFP °09.

[14] J. Clause and A. Orso. A Technique for Enabling and Supporting Debugging
of Field Failures. ICSE "07.

[15] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. ReVirt:
Enabling Intrusion Analysis Through Virtual-Machine Logging and Replay.
OSDI "02.

[16] Floodlight Controller. http://tinyurl.com/ntjxa6l.

[17] Floodlight FIXME comment. Controller.java, line 605. http://tinyurl.
com/afé6nhjj.

[18] R.Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. X-Trace: A Pervasive
Network Tracing Framework. NSDI ’07.

[19] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story,
and D. Walker. Frenetic: A Network Programming Language. ICFP *11.

[20] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay Debugging For Dis-
tributed Applications. ATC *06.

[21] P. Godefroid and N. Nagappan. Concurrency at Microsoft - An Exploratory
Survey. CAV "08.

[22] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center
Network, Sec. 3.4. SIGCOMM ’09.

[23] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: Towards an Operating System For Networks. CCR ’08.

[24] D. Gupta, K. Yocum, M. Mcnett, A. C. Snoeren, A. Vahdat, and G. M. Voelker.
To Infinity and Beyond: TimeWarped Network Emulation. NSDI ’06.

[25] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown. I Know
What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Net-
works. NSDI ’14.

42

http://tinyurl.com/ntjxa6l
http://tinyurl.com/af6nhjj
http://tinyurl.com/af6nhjj

[26] J. Huang and C. Zhang. An Efficient Static Trace Simplification Technique
for Debugging Concurrent Programs. SAS "11.

[27] J. Huang and C. Zhang. LEAN: Simplifying Concurrency Bug Reproduction
via Replay-Supported Execution Reduction. OOPSLA ’12.

[28] N. Jalbert and K. Sen. A Trace Simplification Technique for Effective Debug-
ging of Concurrent Programs. FSE *10.

[29] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl. De-
tailed Diagnosis in Enterprise Networks. SIGCOMM (9.

[30] P. Kazemian, M. Change, H. Zheng, G. Varghese, N. McKeown, and
S. Whyte. Real Time Network Policy Checking Using Header Space Analysis.
NSDI ’13.

[31] P. Kazemian, G. Varghese, and N. McKeown. Header Space Analysis: Static
Checking For Networks. NSDI *12.

[32] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. VeriFlow: Verifying
Network-Wide Invariants in Real Time. NSDI *13.

[33] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
CACM °78.

[34] K. H. Lee, Y. Zheng, N. Sumner, and X. Zhang. Toward Generating Reducible
Replay Logs. PLDI "11.

[35] C.-C. Lin, V. Jalaparti, M. Caesar, and J. Van der Merwe. DEFINED: Deter-
ministic Execution for Interactive Control-Plane Debugging. ATC *13.

[36] X. Liu. WiDs Checker: Combating Bugs in Distributed Systems. NSDI *07.

[37] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek,
and Z. Zhang. D*S: Debugging Deployed Distributed Systems. NSDI *08.

[38] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King.
Debugging the Data Plane with Anteater. SIGCOMM °11.

[39] J. Mccauley. POX: A Python-based OpenFlow Controller. http://www.
noxrepo.org/pox/about-pox/.

43

http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/

[40] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM CCR ’08.

[41] G. A. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information. Psychological Review ’56.

[42] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu.
Finding and Reproducing Heisenbugs in Concurrent Programs. SOSP ’08.

[43] ON.Lab. Open Networking Operating System. http://onlab.us/
tools.html.

[44] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity Violation Bugs
from their Hiding Places. ASPLOS *09.

[45] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu. PRES:
Probabilistic Replay with Execution Sketching on Multiprocessors. SOSP ’09.

[46] B. Pfaft, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker. Ex-
tending Networking into the Virtualization Layer. HotNets *09.

[47] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case
Reduction for C Compiler Bugs. PLDI *12.

[48] P. Reynolds, C. Killian, J. L. Winer, J. C. Mogul, M. A. Shah, and A. Vadhat.
Pip: Detecting the Unexpected in Distributed Systems. NSDI *06.

[49] V. Soundararajan and K. Govil. Challenges in Building Scalable Virtualized
Datacenter Management. OSR ’10.

[50] S. Tallam, C. Tian, R. Gupta, and X. Zhang. Enabling Tracing of Long-
Running Multithreaded Programs via Dynamic Execution Reduction. ISSTA
"07.

[51] G. Tel. Introduction to Distributed Algorithms. Thm. 2.21. Cambridge Uni-
versity Press, 2000.

[52] A. Thompson. http://tinyurl.com/ggc387k.

[53] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: Diagnosing
Production Run Failures at the User’s Site. SOSP ’07.

44

http://onlab.us/tools.html
http://onlab.us/tools.html
http://tinyurl.com/qgc387k

[54] M. Weiser. Program Slicing. ICSE ’81.

[55] A. Whitaker, R. Cox, and S. Gribble. Configuration Debugging as Search:
Finding the Needle in the Haystack. SOSP *04.

[56] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. OFRewind: En-
abling Record and Replay Troubleshooting for Networks. ATC *11.

[57] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. A Survey of Fault
Localization Techniques in Computer Networks. Science of Computer Pro-
gramming ’04.

[58] A. Zeller. Yesterday, my program worked. Today, it does not. Why?
ESEC/FSE *99.

[59] A. Zeller and R. Hildebrandt. Simplifying and Isolating Failure-Inducing In-
put. IEEE TSE °02.

[60] H.Zeng, P. Kazemian, G. Varghese, and N. McKeown. Automatic Test Packet
Generation. CoNEXT *12.

[61] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and
A. Vahdat. Libra: Divide and Conquer to Verify Forwarding Tables in Huge
Networks. NSDI ’14.

45

	Introduction
	Background
	Problem Definition
	Approach
	Searching for Subsequences
	Searching for Timings
	Complexity

	Systems Challenges
	Coping with Non-Determinism
	Mitigating Non-Determinism
	Checkpointing
	Timing Heuristics
	Root Causing Tools
	Scaling and Parallelization
	Limitations

	Evaluation
	New Bugs
	Known bugs
	Synthetic bugs
	Overall Results & Discussion
	Coping with Non-determinism
	Instrumentation Complexity
	Scalability
	Parameters

	Discussion
	Related Work
	Conclusion

