
On the Power of Non-spoofing Adversaries

H.B. Acharya1 and Mohamed Gouda1,2

1 Department of Computer Science
University of Texas at Austin

2 National Science Foundation
{acharya,gouda}@cs.utexas.edu

Abstract. One of the fundamental concepts in network security is the
active adversary. Such an adversary is defined, in the classic paper by
Dolev and Yao, as an adversary that (in addition to eavesdropping pas-
sively), can “impersonate another user and ... alter or replay the mes-
sage”. Thus, the original definition of an active adversary includes the
ability to spoof (lie about its identity). In this paper, we study the spe-
cial case of active adversaries who are restricted from spoofing. As in
the original study by Dolev and Yao, the motivation of our adversary
is to break the confidentiality of the message being transmitted using a
cascade protocol (a protocol in which neither sender nor receiver name
stamps the messages they send). We prove a very surprising result: our
weaker adversary, who is restricted from spoofing, is in fact exactly as
powerful as the unrestricted Dolev-Yao adversary with respect to the
goal of breaking confidentiality of cascade protocols.

1 Introduction

Public-key encryption is widely used to secure network communication. As Need-
ham and Schroeder [12] as well as Dolev and Yao [6] point out, these systems
can be attacked by “active” adversaries that can, in addition to listening pas-
sively,“impersonate another user and ... alter or replay the message”.

In recent years, there has been substantial research on guaranteeing the au-
thenticity of packet information. IPsec [10] and hop integrity [9] are two impor-
tant examples of signing packets. Cryptographic signatures are computationally
expensive, so other groups have developed other anti-spoofing safeguards. The
most popular approach is packet filtering (notably ingress filtering [7], Martian
address filtering [1], forwarding-table based filtering, route-based distributed fil-
tering [13], and Source Address Validity Enforcement [11]). A similar approach,
packet tracing, involves observing traffic at routers and reconstructing a packet’s
actual path [2]. Network intrusion detectors such as DECIDUOUS [4] can also
be used to locate an adversary.

Given this wide range of tools against spoofing, it becomes reasonable to
assume that in many cases the active adversary is no longer able to “impersonate
another user”. How much of the power of Dolev and Yao’s active adversary is
lost when it cannot spoof?

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 437–449, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

438 H.B. Acharya and M. Gouda

In this paper, we study the power of a non-spoofing adversary to break the
security of cascade protocols, as studied in the original paper that defines active
adversaries [6]. We obtain an extremely surprising result: if the aim of the ad-
versary is to compromise confidentiality, then there is no difference whatsoever
between the power of an adversary that can spoof and an adversary that cannot.
If a protocol can protect the confidentiality of a message from a non-spoofing
adversary, it will also resist an adversary that can spoof.

In this paper, we first provide a proof of the above statement for the simple
case of two-step cascade protocols. Next, we prove the result that the security
of a general k-step cascade protocol is equivalent to the security of a set of
two-step cascade protocols. Formally, we demonstrate how to convert any given
k-step cascade protocol P into a set of two-step cascade protocols P{}, such that
P can be broken by adversary X iff P{} can be broken by X . (We define a set
of protocols to be broken by an adversary iff at least one of the protocols in the
set is broken by the adversary.) Note that, iff P can be broken by a spoofing
adversary A, P{} can be broken by A also. By definition, there exist one or more
two-step cascade protocols in P{} that can be broken by A. But by our first
result, as these are two-step cascade protocols, they are also broken by a non-
spoofing adversary Z. In other words, iff P is broken by a spoofing adversary A,
P{} is also broken by the non-spoofing adversary Z. Applying the equivalence of
P and P{} again, we find that this means P is broken by Z. This concludes our
proof.

The next section introduces our notational and conceptual conventions.

2 Users and Adversaries

In this paper, we have used the lambda-calculus convention of representing the
application of a function to an argument, so F (X) is written FX . However, we
assume right-associativity: FGX represents F (G(X)) (unlike lambda calculus,
where FGX means H(X) where H = F (G)).

As FX means F (X), in order to represent concatenation, we use the comma
operator. “F concatenated with X” is written F, X .

A user is a process with a unique identifier such as I, J or K. The users are
connected by a communication network, and can send messages to each other.
The protocol followed by such messages, in order to ensure their confidentiality,
is the focus of this paper.

The users of a protocol form a public key system.

1. Every user X has two functions:
(a) The public key function BX

(b) The private key function RX

Both BX and RX map finite binary sequences (i.e. numbers) to finite binary
sequences.

2. The pairs (X, BX) are available to all users.
3. RX is known only to X .
4. BX and RX satisfy the conditions

On the Power of Non-spoofing Adversaries 439

– ∀M, BXRXM = RXBXM = M .
– It is cryptographically hard to obtain M from BXM without access to

RX .
Note that the second condition forces every user X to have distinct BX as
well as RX . (Otherwise, let BI = BJ . As J has access to all public keys, it
knows this. Now J can deduce that RJBIM = M , so it can obtain M from
BIM .)

The only operations users can employ are their public and private key functions.
Note that it is not possible to distinguish whether it is encryption or decryption
which is being applied to an argument, unless the argument is known. For in-
stance, suppose user I applies BI to the argument M ; this is an encryption. But
if I applies BI to RIM , it is a decryption.

However, several layers of these operations can be applied. For instance, user
I has access to the key RI and all keys BX (where X is any user), so from
M it can generate RIBJBIM . Such a combination of operations is called a key
sequence.

Adjacent matching public and private key functions in a key sequence cancel
each other out. So for instance, RIBJRJBIM = RIBIM = M . A key sequence
with no such adjacent matching pairs is called a simple key sequence. Reducing a
key sequence to a simple key sequence by recursively removing all such matching
pairs is called simplification.

The adversary is a valid user in the protocol system, whose motive is to obtain
the message M being communicated between two other users (say I and J). In
this paper, we consider two models of adversary:

1. The “classic” Dolev-Yao adversary A.
2. The “non-spoofing” adversary Z.

The adversary A can perform the following actions:

1. A can obtain any message passing through the network.
2. As a legitimate user, A can send any message to any other user in the net-

work. In particular, A can send messages to I with a fake source address
stating the message is from J , and similarly, can send messages to J pre-
tending to be I. Of course, it can also send messages that claim, honestly,
that they are from A.

3. A has a private key function RA, and access to the public key functions of
all the other users in the system. It can apply any key sequence composed
of these keys, to any message it obtains.

A has the following restrictions to its power:

– A cannot break the cryptography used. For instance, it cannot extract M
from BIM without obtaining RI .

– A cannot tamper with the public information. For instance, it cannot cause,
say, I to think BA is the value of BJ .

440 H.B. Acharya and M. Gouda

A can obtain messages, apply its own keys, and send messages to any user with
its own or a different source address. Hence, as A can masquerade as another
user (spoof), we refer to it as a spoofing adversary.

Adversary Z is identical to A, but has one more restriction on its power : it
is a valid user of the system, and can obtain messages, apply its own keys, and
send messages to any user, but such messages bear the true source address. Such
an adversary cannot spoof, i.e. lie about its identity in a message; hence it is
called a non-spoofing adversary.

In the next section, we describe the simple family of two-step cascade proto-
cols; section 4 shows that A and Z are equivalent with respect to their power to
break the security of these protocols.

3 Two-Step Cascade Protocols

In this section, we discuss a simple class of cascade protocols, consisting of only
two steps : a request and a reply. The objective of such a protocol is to transmit
a secret message (the plaintext) M between two users. This is a simplification
of the general theory for k-step cascade protocols developed in [6].

A two-step cascade protocol is defined by two sets of key sequences aXY and
bXY .

aXY ∈ {RX , BX , BY }∗
bXY ∈ {RY , BX , BY }∗

where X and Y are any two users. In practice, X and Y are distinct (there is
no reason why a user should send messages to itself).

The protocol has the property of being uniform: the key sequences have the
same structure, irrespective of which users are trying to communicate. For in-
stance, suppose aIJ = RIBJBJ ; then in this protocol, aKL = RKBLBL. Note
that it is not necessary that aXY = aY X or bXY = bY X .

The first class of messages in the protocol, the request, has the form

X → Y : X, aXY M, Y

The only part of the message that is encrypted is the plaintext. Source and
destination are sent in the clear.

The second class of messages, the reply, has the form

X ← Y : Y, bXY aXY M, X

Note that bXY is applied to the entire sequence aXY M and not to the original
message M .

A well-known example of such a protocol is due to Diffie and Hellman [5].

I → J : I, BJRIM, J

I ← J : J, BIRJBIRJBJRIM, I

= J, BIRJM, I

We observe that aXY = BY RX and bXY = BXRY BXRY in this protocol.

On the Power of Non-spoofing Adversaries 441

3.1 Conditions for Security

For a protocol to be secure, the adversary should not be able to extract the message
plaintext M . (Note that, in this paper, we only consider attacks on confidentiality,
and not on other measures of security such as freshness and integrity. For example,
we do not care if A obtains messages by intercepting them instead of eavesdrop-
ping. We are also not concerned by attacks in which A generates and injects new
messages into the system impersonating another user.)

We call the entire key sequence applied to the plaintext in a message the guard
of the message. The adversary should not be able to remove the entire guard if
the message is secure.

We now provide an example of a successful attack. Suppose I and J are using
the Diffie-Hellman protocol shown in the previous section. A breaks the security
in the following way :

1. A captures the first message, BJRIM .
2. A uses the protocol to send this message to J as a new “request” and receives

the corresponding “reply” in return.

A→ J : A, BJRIM, J

A← J : J, BARJBARJBJRIM, A

= J, BARJBARIM, A

3. A applies the key sequence BIRABJRA to the payload, obtaining M .

This attack proves that the Diffie-Hellman protocol which we presented in the
previous section is clearly not secure.

However, an interesting feature of cascade protocols is that there exist clear
necessary and sufficient conditions for the security of a cascade protocol. These
conditions are derived in [6]; we will briefly discuss them below.

ΣA = RA ∪ {∀X : BX} is the library of keys user A has access to.
ΠA = {∀X : bAX} is the library of key sequences user A can indirectly cause

to be applied to a message. This is because, if A sends a message M1 as a request
to I, it receives bAIM1 as the reply.

Communication between users I and J using protocol P :

I → J : I, aIJM, J

I ← J : J, bIJaIJM, I

is secure from attack by adversary A if (and only if) there exists no sequence
a′

IJ with both the following properties:

– a′
IJ is composed only of keys and key sequences which the adversary A can

cause to be applied to a message, i.e.

a′
IJ ∈ (ΣA ∪ΠA)∗

– The simplified key sequence a′
IJaIJ is the empty key sequence, i.e. a′

IJaIJM =
M .

442 H.B. Acharya and M. Gouda

(Note that there is no need to separately state that the adversary should also not
be able to remove bIJaIJ , the guard of the reply message. This requirement is
covered by the non-existence of a′

IJ defined above. The reason for this asymmetry
is that bIJ ∈ Π , i.e. the adversary can apply bIJ to a message. To see how, note
that the adversary can send aIJM to J , pretending to be I, and obtain bIJaIJM .

Now, consider the case that there exists a key sequence cIJ such that the
adversary can apply cIJ , and cIJbIJaIJM = M . But in this case, there clearly
exists a sequence a′

IJ : a′
IJ = cIJbIJ . Thus, the condition that the adversary A

should not be able to remove the guard of the reply is subsumed by the condition
that A should not be able to remove the guard of the request.)

Protocol P is secure from adversary A iff, for all possible choices of I, J, and
A (given A is not I or J), communication between users I and J using P is
secure from attack by A.

In the next section, we study the security of two-step cascade protocols from
both adversaries A and Z defined in the previous section.

4 Security of Two-Step Cascade Protocols

The actions available to the spoofing adversary A are a proper superset of the
actions available to a non-spoofing adversary Z, so A is clearly at least as pow-
erful as Z. In this section, we prove the very interesting result that the converse
also holds: Z is as powerful as A, with respect to the goal of attacking a two-step
cascade protocol.

Theorem 1. A non-spoofing adversary and a spoofing adversary are equivalent
in power with respect to the goal of breaking the confidentiality of a two-step
cascade protocol.

Proof. We begin our proof by noting that the spoofing adversary A is at least
as powerful as the non-spoofing adversary Z. If protocol P cannot be broken by
A, then both A and Z are (equally) ineffective attacking it.

To prove that Z is also as powerful as A, we demonstrate that any protocol
P that can be broken by A can also be broken by Z.

The necessary and sufficient conditions to ensure that P cannot be broken by
A are given by Theorem 1 of Dolev and Yao [6]:

1. aIJ contains either BI or BJ .
2. If bIJ has RJ then it also has BJ .

As A can break P , one of these conditions must be false. We now demonstrate
that, if either of these two conditions does not hold, then Z can extract message
M from the message aIJM , breaking protocol P .

1. Consider the case that aIJ has neither BI nor BJ .
In this case, aIJ is composed of RI .
As BI is a public key, it is available to Z. Thus Z can remove any guard
composed of RI .
Hence Z can obtain M from the message aIJM .

On the Power of Non-spoofing Adversaries 443

2. The second possible case where P is insecure occurs when bIJ is composed
of RJ and BI only.
We begin by observing two facts.
First, for any Gx, the keys in every sequence Gx are constrained to be RI ,
BI , or BJ . In particular, there are three possible values for the left-most key
in Gx.
Second, bZJ is simply bIJ , with BZ substituted for BI . In other words,
bZJ is composed of RJ and BZ only. But Z has RZ and BJ . Thus, if any
subsequence of bZJ (including bZJ itself) occurs as the outermost sequence
of keys in a guard, Z can remove this sequence.
We now present the attack Z can use to compromise protocol P .
Note that aIJ is a key sequence of finite length (say, of length n).
We introduce the symbols Gn, . . .G1, G0. Gx means the suffix of aIJ , which
has length x. Thus Gn = aIJ , ... G0 is the empty sequence.
Furthermore, G0 is a proper suffix of G1, G1 is a proper suffix of G2, etc.
We show that, given any GxM , 0 ≤ x ≤ n, adversary Z can always remove
at least one of the left-most keys to obtain GyM , 0 ≤ y ≤ x.
Let the k + 1 right-most elements in bIJ be . . . RJBk

I . (k ≥ 0. Note that, for
the protocol to be insecure, it is guaranteed that there must be at least one
RJ in the key sequence bIJ .)
(a) If the left-most element in GxM is RI , then Z can remove this RI since

Z has BI .
(b) If the left-most element in GxM is BJ , then Z first applies the key

sequence Rk
Z to GxM . Next, Z (stating its true identity as Z) initiates

protocol P with J :

Z → J : Z, Rk
ZGxM, J

Z ← J : J, bZJRk
ZGxM, Z

bZJ is the same as bIJ , except that each occurrence of BI is replaced by
BZ . In particular, its right-most k+1 elements are RJBk

Z . This sequence
cancels out the k+1 leftmost elements in Rk

ZGxM (recall these elements
were Rk

ZBJ).
Adversary Z then removes all remaining elements of bZJ forming the
outermost key sequence in the reduced bZJRk

ZGxM . The resulting GyM
is shorter (at least one element shorter) than GxM .

(c) If the left-most element in GxM is BI , then by symmetry Z simply
follows the same attack detailed in the item above. Z applies Rk

Z , then
initiates protocol P with I, and so on. (Note that this algorithm removes
BK for any K that Z communicates with. In the previous item, we used
K = J ; here K = I. The working is identical.)

This concludes our proof of the fact that Z can always remove at least the
left-most element from the guard Gx of GxM .
But the length of the original guard Gn is finite. By well ordering, it is
not possible to have an infinite chain of the form GnM, Gn−1M, Gn−2M . . .
without eventually reaching G0M , i.e. M . Hence, at some point, Z will obtain
M .

444 H.B. Acharya and M. Gouda

Hence, we conclude that Z is as powerful as A in compromising the confiden-
tiality of two-step cascade protocols.

5 Security of k-Step Cascade Protocols

In this section, we generalize our study of two-step cascade protocols to k-step
cascade protocols where k ≥ 2. Such protocols consist of repeatedly sending
messages back and forth between two users. (Note that we assume the traditional
“ping-pong” model of cascade protocols, where only two users pass the message
back and forth and apply layers of encryption and decryption.)

We begin by defining the following protocol used by I and J to securely
communicate the confidential message plaintext M .

I → J : I, g1
IJM, J

I ← J : J, g2
IJg1

IJM, I

I → J : I, g3
IJg2

IJg1
IJM, J

. . .

I → J : I, gk
IJgk−1

IJ ...g1
IJM, J

The initial step consists of encrypting the plaintext with a key sequence (in this
case g1) and sending the result to another user. In each subsequent step, a key
sequence is applied to the entire message received in the step before. The result
of the operation is sent to the other user.

This subsequent step is repeated until the total number of messages reaches
k. Note that, although in the example k is odd, in general k may also be even,
in which case the final message is of the form

I ← J : J, gk
IJgk−1

IJ ...g1
IJM, I

For convenience, we assume for the remainder of this section that the two legit-
imate users communicating are always I and J . This allows us to use the clean
notation g1, g2 . . . as shorthand for the hard-to-read g1

IJ , g2
IJ

If we consider any two consecutive steps (say steps l and l+1) of the protocol,
they must be of one of the two forms

I → J : I, gl...g1M, J

I ← J : J, gl+1gl...g1M, I

or

I ← J : J, gl...g1M, I

I → J : I, gl+1gl...g1M, J

The first form results when l is odd, and the second when l is even.

On the Power of Non-spoofing Adversaries 445

The first form is obviously a two-step cascade protocol in its own right, with
aIJ = gl...g1 and bIJ = gl+1. For the second form, rewriting it as

J → I : J, gl...g1M, I

J ← I : I, gl+1gl...g1M, J

shows clearly that it is also a two-step cascade protocol with aJI = gl...g1 and
bJI = gl+1. (Note that in this case, J issues the request and I the reply; thus,
we use aJI instead of aIJ and bJI instead of bIJ .)

From these observations, we can conclude the following lemma :

Lemma 1. Any two consecutive steps of a k-step cascade protocol constitute a
valid two-step cascade protocol.

The set of all two-step cascade protocols “contained” in a k-step cascade proto-
col P is called the decomposition of P . There are k − 1 such two-step cascade
protocols, consisting of steps 1 and 2, 2 and 3 ... k − 1 and k.

The question naturally arises as to how the security of a k-step cascade proto-
col is related to the security of the elements of its decomposition. We now show
the very interesting result that, if we define a set of protocols to be secure iff all
the member protocols in the set are secure, then the security of a k-step cascade
protocol P and the security of its decomposition P{} are equivalent.

Theorem 2. A k-step cascade protocol P is secure iff every two-step cascade
protocol in its decomposition is secure.

Proof. We need to prove both directions - if and only if. To prove security, we
will again employ Theorem 1 of Dolev and Yao [6], which states that a cascade
protocol is secure iff it satisfies the following two conditions:

1. The first key sequence applied to the message plaintext (i.e. g1) must, in its
simplified form, contain either BI or BJ .

2. All key sequences that are subsequently applied must, in their simplified
forms, contain BI if they contain RI and BJ if they contain RJ .

The decomposition of protocol P is the set

P{} = {P1, P2, . . . Pk−1}
where Pl is the two-step cascade protocol formed by steps l and l + 1 of P .

To prove the “if” direction, suppose P is insecure even though P{} is secure.
As P is insecure, it must violate at least one of the two conditions given above.

1. Consider the case that P violates the condition 1 above. In this case, the
security is broken in the first step of P . As P{} is known to be secure, P1 is
secure.
g1 is the guard of the message in the first step of the secure protocol P1.
Thus by condition 1, g1 (in its simplified form) contains either BI or BJ .
g1 is also the first key sequence applied to the message plaintext in P . Hence
the first guard applied to M in P contains BI or BJ , i.e. P obeys condition
1. Thus we obtain a contradiction.

446 H.B. Acharya and M. Gouda

2. Suppose the security of P is broken in step no. l, where l > 1. (The first
step has been proved secure in the above item.) If it is broken in more than
one step, we choose the smallest l. If P violates condition 1, then the first
step is broken; as in this case we consider l > 1, it follows that P is insecure
because it does not satisfy the second condition of the theorem.
(a) If l is odd.

In this case, the simplified form of gl contains RI and not BI .
The second step of Pl−1 involves applying the key sequence gl. We know
that the simplified form of gl contains RI and not BI . Hence we see
that Pl−1 violates condition 2 - in other words, Pl−1 is insecure. But we
started with the assumption that P{} is secure, which of course requires
that the protocol Pl−1 is secure. Hence we have a contradiction.

(b) If l is even.
This case is exactly analogous to the one above.
The simplified form of gl contains RJ and not BJ . In other words, Pl−1

is insecure. But Pl−1 is known to be secure, as P{} is secure. Thus, we
obtain a contradiction.

As the assumption that P is insecure but its decomposition P{} is secure al-
ways leads to a contradiction, it must be impossible. Hence we conclude that, if
{P1, P2, . . . Pk−1} is secure, P must also be secure.

To prove the “only if” direction, suppose P is secure even though P{} =
{P1, P2, . . . Pk−1} is insecure.

Let l be the smallest value such that Pl is insecure. There are two ways in
which this can happen: violation of the first and of the second conditions of the
theorem above.

1. If Pl violates the first condition.
(a) Consider the case l = 1.

P is known to be secure.
g1 is the guard of the first message in secure protocol P .
Hence, by condition 1, g1 (in its simplified form) contains either BI or
BJ .
g1 is also the guard of the first message in P1. As g1 in its simplified
form contains either BI or BJ , P1 does not violate condition 1. This
contradicts our initial assumption that P1 violates the condition.

(b) Consider l > 1.
Pl is insecure because gl...g1 contains neither BI nor BJ .
In this case, the guard gl...g1 is composed of only RI and RJ . In other
words, an adversary can capture message gl...g1M and completely re-
move the guard to obtain plaintext M , using only the keys BI and BJ

(which are public keys).
This means that protocol P is also insecure as it has the message gl...g1M .
But protocol P is known to be secure - a contradiction.

2. If Pl violates the second condition.
This means that gl+1 contains RI but not BI , or RJ but not BJ .

On the Power of Non-spoofing Adversaries 447

(a) If l is even (so l + 1 is odd).
gl+1, which is applied by I, contains RI but not BI .
As l + 1 > 1, gl+1 is not the first key sequence applied to M in protocol
P . (g1 is this first key sequence.)
Consequently, if gl+1 contains RI but not BI , protocol P violates con-
dition 2 of Dolev and Yao, so it is insecure. But P is known to be secure
- a contradiction.

(b) If l is odd.
This case is exactly analogous to the one presented above.
gl+1 contains RJ but not BJ .
gl+1 is not the first key sequence applied to M in protocol P .
P is thus proven insecure by the Dolev-Yao theorem. This contradicts
our initial assumption that P is secure.

Therefore, the assumption that P is secure but its decomposition is insecure
always leads to a contradiction and must be impossible. Hence, given that P is
secure, {P1, P2, . . . Pk−1} is also secure.

As we have proved both the “if” and the “only if” directions, we conclude our
proof.

It is now simple to prove our main result.

Theorem 3. A non-spoofing adversary and a spoofing adversary are equivalent
in power with respect to the goal of breaking the confidentiality of a two-step
cascade protocol.

Proof. A set of protocols is secure iff every protocol in the set is secure. By
duality, we define a set of protocols to be broken by an adversary iff at least one
of the protocols in the set is broken by the adversary.

By Theorem 2, if (and only if) P can be broken by an adversary A, so can its
decomposition P{}. Let us consider that this successful adversary is a spoofing
adversary A.

As P{} is broken, we know that there must exist at least one member protocol
Pl ∈ P{} such that Pl is vulnerable to A. (If there are multiple vulnerable
members, we can choose any one at random).

But Pl is a two-step cascade protocol. By Theorem 1, Pl (and hence P{}) is
also broken by a non-spoofing adversary Z.

From Theorem 2, we conclude that P is also broken by Z.
As Z can break the confidentiality of protocol P in every case where A can,

Z is at least as powerful as A. It is known that A is at least as powerful as Z.
From these two statements, we conclude that A and Z have equivalent power.
This concludes our proof.

6 Conclusion

This paper presents a novel result concerning the security of cascade protocols,
as defined in the landmark paper of Dolev and Yao [6]. In the original definition

448 H.B. Acharya and M. Gouda

of an “active” adversary, the adversary is defined as having two novel powers:
impersonation, and altering or replaying messages. (This is in addition to the
powers of a “passive” adversary, i.e., eavesdropping and applying its own keys
to captured messages). As there now exist effective means to prevent spoofing,
we studied the effect on an active adversary if it is made unable to spoof. The
result was completely unexpected: if the aim of the adversary is to compromise
confidentiality, then a guarantee of no spoofing does not reduce the power of the
active adversary to compromise cascade protocols. As a component of our proof
of this theorem, we also obtain the independently interesting theorem that any
k-step cascade protocol can be decomposed into a set of two-step protocols, and
this set is equivalent in security to the original protocol.

We believe this result to be interesting because, while it is directly applicable
only to one particular class of protocols (namely cascade protocols), it allows us
to carry on a discussion of the powers of different kinds of adversaries. Clearly, the
scope for further research extends in two directions. In the first place, it would be
interesting to explore the relative power of adversaries that are restricted from
using one or more of the powers mentioned above. The other question raised
by our research is how the protocol model could be strengthened. Starting with
the simple model of cascade protocols, if we use more general protocol models,
at what point does the ability to spoof, for example, become non-redundant?
Thus, our adoption of a simple protocol model exposes several interesting lines
for further inquiry. In contrast, previous work, which began by assuming stronger
models such as namestamp protocols, yielded mostly negative results. For ex-
ample, it has been proven that namestamp protocols have no simple test for
security [3].

We propose, as an open problem, the generalization of this discussion (re-
garding the powers of different adversaries) to include more practical protocols.
Stated as a question, “How can the protocol model be strengthened so that it
remains possible to derive interesting results about the power of the adversary,
but the family of protocols covered by the model becomes broad enough to in-
clude protocols which are in practical use?” In our immediate future work, we
intend to explore one such stronger model: we are studying whether our results
continue to hold when cascade protocols are generalized to allow more than two
parties [8].

References

1. Baker, F.: Requirements for ip version 4 routers. RFC 1812 (1995)
2. Bellovin, S.: Icmp traceback messages. Internet Draft: draft-bellovin-itrace-00.txt

(2000)
3. Book, R., Otto, F.: On the security of name-stamp protocols. In: Third Conference

on Foundations of Software Technology and Theoretical Computer Science, vol. 39,
pp. 319–325 (1985)

4. Chang, H., Narayan, R., Wu, S., Vetter, B., Wang, X., Brown, M., Yuill, J., Sargor,
C., Jou, F., Gong, F.: Deciduous: decentralized source identification for network
based intrusions. In: Proceedings of the 6th IFIP/IEEE International Symposium
on Integrated Network Management (1999)

On the Power of Non-spoofing Adversaries 449

5. Diffie, W., Hellman, M.: Multiuser cryptographic techniques. In: Proceedings of
the AFIPS (1976)

6. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

7. Ferguson, P., Senie, D.: Network ingress filtering: Defeating denial of service attacks
which employ source ip address spoofing. RFC 2827 (2000)

8. Goldreich, O.: On the security of cryptographic protocols and cryptosystems. D.Sc.
Thesis, Technion. (1983)

9. Gouda, M.G., Elnozahy, E., Huang, C., McGuire, T.: Hop integrity in computer
networks. In: Proceedings of the 8th IEEE International Conference on Network
Protocols (2000)

10. Kent, S., Atkinson, R.: Security architecture for the internet protocol. RFC 2401
(1998)

11. Li, J., Mirkovic, J., Wang, M., Reiher, P., Zhang, L.: Save: Source address validity
enforcement protocol. In: Proceedings of IEEE INFOCOM (2002)

12. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of ACM 2, 993–999 (1978)

13. Park, K., Lee, H.: On the effectiveness of probabilistic packet marking for ip trace-
back under denial of service attack. In: Proceedings of IEEE INFOCOM (2001)

	On the Power of Non-spoofing Adversaries
	Introduction
	Users and Adversaries
	Two-Step Cascade Protocols
	Conditions for Security

	Security of Two-Step Cascade Protocols
	Security of k-Step Cascade Protocols
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

