
1

Is That You?

Authentication in a Network without Identities
Taehwan Choi∗, H.B. Acharya∗, Mohamed G. Gouda∗†

∗Department of Computer Science

The University of Texas at Austin
†National Science Foundation

Abstract

Most networks require that their users have ”identities”, i.e. have names that are unique and fixed for a relatively

long time, and have been approved by a central authority (in order to guarantee their uniqueness). Unfortunately, this

requirement, which was introduced to simplify the design of networks, has its own drawbacks. First, this requirement

can lead to the loss of anonymity of communicating users. Second, it can allow the possibility of identity theft. Third,

it can lead some users to trust other users who may not be trust-worthy. In this paper, we argue that networks can be

designed without user identities and their drawbacks. Our argument consists of providing answers to the following

three questions. (1) How can one design a practical network where users do not have identities? (2) What does

it mean for a user to authenticate another user in a network without identities? (3) How one can design a secure

authentication protocol in a network without identities?

I. INTRODUCTION

Almost every network is designed under the assumption that each network user is assigned an identity, which is

a name that satisfies three conditions:

i. Unique: The identity assigned to a network user is distinct from the identity assigned to any other network

user.

ii. Fixed: Once an identity is assigned to a network user, then this identity remains assigned to this user (and

not to any other user) for a relatively long time, measured in months, years, or decades, even if this user

decides to quit the network and no longer communicate with other users.

iii. Approved by a Central Authority: The network has a central authority that generates or at least approves

the identities assigned to all network users. This authority guarantees that (among other things) the identities

assigned to distinct network users are distinct.

The second condition, fixed identity, needs some explanation. Assume that a user x in a network is assigned an

identity ix. Thus, when each other user in the network needs to send a message to user x, this other user needs to

name ix. Assume also that user x quits the network and its now available identity ix is assigned to another user y in

November 22, 2010 DRAFT

2

the network. Now if some user z, who is not yet aware that user x has left the network, decides to send a message

to user x and names ix, then the network delivers the sent message to the wrong user y (instead of discarding the

message after recognizing that the intended message receiver has left the network). We conclude from this scenario

that when a user leaves the network, its identity should be retired and not assigned to another user, at least for a

relatively long time.

Some examples of user identities are as follows. The identity of a user phone in a phone network is the phone

number that is assigned to this phone. The identity of a user computer in an IP network (in the Internet) is the IP

address of this computer. Also, the identity of a user website in the World Wide Web is the URL assigned to this

site.

The identities assigned to the users of a network play an important role in the execution of the network:

1. User Identification: When a user x wants to communicate with another user y, user x needs to supply the

network with the identities of x and y so that the network can compute the best route for routing the exchanged

messages between users x and y.

2. User Authentication: Any user x can be provided with a certificate that x can later use to prove to any other

user that it is indeed user x. The certificate, provided to user x, has several items including the identity of

user x and the public key of user x.

3. User Reputation: An identity is assigned to a network user for a relatively long time, and during this time,

the reputation of this user, good or bad, can develop and take hold among other network users. Thus, each

network can have ”reputation systems” for recording and querying the reputations of network users. Note that

these reputation systems cannot be developed unless the network users have unique and fixed identities.

Unfortunately, the adoption of user identities in a network does create some security holes in that network:

a. Anonymity Loss: Each message that is exchanged between users x and y needs to carry the identities of x

and y in the clear in order to facilitate the routing of the message between x and y. Thus any user, that can

observe this message while the message is in transit between x and y, can conclude correctly that users x

and y are currently in communication (even if the message contents are encrypted).

b. Identity Theft: In communications that do not require strong user authentication, any user x, who happens to

know the identity of another user y, can pretend to be user y while it communicates with a third user z.

c. Misplaced Trust: As mentioned above, the existence of user identities can facilitate the development of

reputation systems. However, the data stored in some reputation systems can be corrupted, for example to

indicate that some user x can be trusted whereas in fact user x is not trust-worthy.

There are two approaches to address the security holes that are created by adopting user identities in a network.

In the first approach, one develops techniques to defend against each one of these holes. For example, to defend

against identity theft, one may require that each communication between any two users in the network should be

preceded by strong mutual authentication.

November 22, 2010 DRAFT

3

In the second approach, one decides to design their network without (unique and fixed) user identities. In this

case, the designed network will not have any of security holes that may be created by adopting user identifiers.

In this paper, we follow this second approach (simply because we believe that no one has attempted to follow

this approach before), and attempt to answer the following three challenging questions:

i. How can one design a network without user identities?

ii. What does it mean for a user to authenticate another in such a network?

iii. How can one facilitate one user to authenticate another in such a network?

In the next section, we answer the first question by outlining the architecture of a network that does not have

user identifiers.

II. A NETWORK WITHOUT IDENTITIES

In this section, we describe the architecture of a network where users do not have identities. In this network,

instead of an identity, each user x has an address, denoted adx, and a nonempty set of pseudonyms, denoted NMx.

The value of the address adx and the contents of the set NMx satisfy the following three conditions:

1. Unique: The value of adx for a user x is not equal to the value of ady for any other user y. Also, the contents

of set NMx for user x are disjoint from the contents of set NMy for user y.

2. Not Necessarily Fixed: At any instant, each user x can change the value of its address adx or the contents

of its pseudonym set NMx.

3. Approved by a Central Authority: Only user x can request that the value of its address adx and the contents

of its pseudonym set NMx be changed. However, the network acts as a central authority, and declines any

part of the request that violates the above uniqueness condition. For example, if user x requests that the value

of its address adx be changed to a value that is currently being claimed for address ady for another user y,

then the network will decline the request of user x.

Notice that the second condition, that adx and NMx are required to satisfy, is the opposite of the second condition

that an identity of user x is required to satisfy. This shows that adx and NMx do not constitute an identity of user

x.

The value of address adx indicates a physical location where user x can receive messages. Thus when some user

y wants to send a message to user x, user y sends the message to adx.

Each pseudonym nmx in the pseudonym set NMx of user x is meant to identify user x in one connection with

another user in the network. However, nmx may not identify user x uniquely since other users in the network may

claim the same pseudonym nmx as their own. Therefore, when a user y requests from the network to be connected

with a user with the pseudonym nmx, and the network recognizes that there are more than one user with the same

pseudonym nmx, then the network uses a uniform distribution to select at random one of these users and connects

this user with user y.

Because at any time each user x can update the value of its address adx and the contents of its pseudonym set

NMx, user x needs to register in the network, every T seconds, the current value of adx and the current contents

November 22, 2010 DRAFT

4

of NMx. Thus, every T seconds, user x sends to the network a registration message that contains the current

value of adx and the current contents of NMx. The network maintains a registration table where it stores the latest

registered address adx and the latest registered pseudonym set NMx for each user x in the network.

When a user x with pseudonym nmx wants to communicate with another user y with a pseudonym nmy , user

x sends a request message, that contains adx, nmx, and nmy to the network. Then the network searches in its

registration table for a user y with pseudonym nmy . If the network finds no such user y in the registration table,

the network rejects the request. If the network finds (exactly) one such user in the registration table, the network

makes this user y.

Next, the network computes a symmetric connection key CK and sends reply messages to both users x and y.

The reply message to user x contains adx, nmx, ady , nmy , and the connection key CK. The reply message to

user y contains adx, nmx, ady , nmy , and CK. When users x and y receive their respective reply messages from

the network, they can start exchanging messages, that are encrypted using the connection key CK.

Once users x and y receive their respective reply messages from the network and recognize that they are connected,

they proceed to execute an authentication protocol in order that each of them authenticates the other. But what does

it mean for a user to authenticate another in this network (where users have no identities)? We answer this question

in the next section.

III. USER AUTHENTICATION IN THE NETWORK

Consider the case where a user x with a pseudonym nmx was connected to (and communicated with) another

user y with a pseudonym nmy as many as k times, where k is at least one. Later, user x with its pseudonym nmx

requests from the network to be connected, for the (k + 1)-th time, to a user with the pseudonym nmy and the

network grants user x its request. Now how can either user (x or y, respectively) be sure that it is connected to the

same user (y or x, respectively) to whom it was connected k times in the past?

This is not an easy question to answer. For example, it is possible that after users x and y were connected k times

in the past, user y gave up its pseudonym nmy and a third user z later claimed nmy as one of its pseudonyms.

Now, when user x requests to be connected to a user with the pseudonym nmy , user x is connected to user z

instead of user y.

The answer to the above question is a new authentication protocol that we designed for our network. When two

users x and y are connected by the network, if anyone of these two users, say user x, thinks that it had been

connected to the other user, user y, several times in the past, then executing the authentication protocol by the two

users x and y, can lead user x to know for sure whether the other user, user y, is the same user to whom user x

was connected several times in the past.

Our design of the authentication protocol is intended to defend against an adversary that can perform two

dangerous operations:

1. Eavesdropping: The adversary can read every message that is sent between any user and the network or

sent between any two connected users in the network. In particular, the adversary can read every registration

November 22, 2010 DRAFT

5

message that is sent from a user to the network. Thus, the adversary can compute and maintain an accurate

copy of the registration table that is stored in the network.

Note that the exchanged messages between (connected) users are encrypted using connection keys and so the

adversary cannot understand them, even if it does read them.

2. Impersonation: The adversary can pretend to be a user in the network and send a message to the network or

to any other user in the network. The adversary can also pretend to be the network and send a message to

any user in the network. Each message, that is sent by the adversary, is composed by the adversary using the

knowledge that the adversary has gained from reading all the sent messages in the network. For example, the

adversary can ”replay” a message that has been sent earlier in the network.

Note that the adversary cannot impersonate the network, because we assume that (1) the network has a private

key whose corresponding public key is known to all users in the network, and (2) the network uses its private

key to sign every (reply) message that the network sends to a user.

The objective of the adversary is to be connected to a user x in the network and then to use the authentication

protocol to convince user x that it (the adversary) is the same user y to whom user x was connected several times

in the past.

The designed authentication protocol is simple enough. When two users x and y are connected, each of the

two users selects a new pseudonym and a new “token”. Then the two users exchange their new pseudonyms and

new tokens encrypted using the connection key CK. Let nmx and tkx be the new pseudonym and new token

selected by user x and let nmy and tky be the new pseudonym and new token selected by user y. After exchanging

their new pseudonyms and tokens, the two users x and y end up with the following tuple which defines their next

authenticated connection:

[nmx, tkx, nmy, tky]

Now assume that user x wants to establish the next connection to user y, then x initiates the connection protocol

indicating that its pseudonym is nmx and that it wants to be connected to a user with the pseudonym nmy . There

are two cases that need to be considered in this scenario.

In the first case, the network connects user x with the correct user y where both x and y have the same two

tokens. In this case, the authentication protocol proceeds as follows: User x sends tkx to user y which checks that

the received token is the expected one and sends in turn tky to user x which checks that the received token is the

expected one.

In the second case, the network connects user x with a user z, different from the correct user y. (This could have

happened as follows. First, user y decided to give up its pseudonym nmy , then later user z decided to claim nmy

as one of its pseudonyms. Thus when user x requested to be connected with the pseudonym nmy , the network

connects user x to user z which does not know either of the two tokens tkx and tky .)

In this second case, the authentication protocol proceeds as follows. User x sends tkx to user z which sends

back an arbitrary value (different from tky) to user x which recognizes that it is communicating with a different

November 22, 2010 DRAFT

6

user than user y. Thus, each of the two users concludes that it is communicating with the other user for the first

time.

In either case, at the end of the authentication protocol, user x selects a new pseudonym nm′x and a new token

tk′x and sends them to the other user, whether y or z. Also, the other user, whether y or z, selects a new pseudonym

nm′y and a new token tk′y to user x. Thus both user x and the other user, whether y or z, end up with the following

tuple which defines their next authenticated connection:

[nm′x, tk′x, nm′y, tk′y]

So far, we outlined broadly the three protocols in our network (where users have no identities): the registration

protocol, the connection protocol, and the authentication protocol. In the registration protocol, each user sends a

registration message to the network every T seconds. In the connection protocol, a user x sends a request message

to the network requesting to be connected to another user y, and the network replies by sending reply messages to

both x and y informing them that they have been connected. In the authentication protocol, two connected users

exchange and verify their tokens in order to check whether they had communicated earlier.

In the next three sections, we discuss these three protocols in greater detail.

IV. REGISTRATION PROTOCOL

The function of the registration protocol is to allow each user x in the network to periodically register its current

address adx and its current pseudonym set NMx. This protocol also allows each user to periodically register its

current registration key RKx, which is a public key, selected at random by user x, whose corresponding private

key is known only to user x.

The registration protocol requires that, every T seconds, each user x sends to the network a registration message

of the following form:

(adx, NMx, RKx, tx, signx)

where

adx: is the current address of some user.

NMx: is the current pseudonym set of the user at address adx.

RKx: is the current registration key of the user at address adx.

tx: is the real time, or timestamp, of the user at address adx when this user sends the registration message.

signx: is the message signature signed by the private key that corresponds to RKx.

The network stores the data, that are contained in the received registration messages into a table called the

registration table. The registration table has four columns, also called attributes, named address, pseudonym set,

registration key, and timestamp. The index attribute of this table is the address. Table I illustrates the registration

table when it has two tuples.

When the network receives a registration message (adx, NMx, RKx, tx, signx) from a user at address adx, the

network updates the registration table by executing the following protocol:

November 22, 2010 DRAFT

7

TABLE I

REGISTRATION TABLE

address pseudonym set registration key timestamp

adx NMx RKx tx

ady NMy RKy ty

Step 1:

If the timestamp tx in the message is not “close” to the real time of the network or if the message signature

signx is not correct, then the network discards the message and terminates the protocol.

Step 2:

If the network finds no tuple in the registration table whose address is adx, then the network adds the tuple

[adx, NNx, RKx, tx] to the registration table, where NNx is the same set as NMx after removing from it

every pseudonym that already occurs in the registration table, and terminates the protocol.

Step 3:

If the network finds a tuple [ad′x, N ′x, RK ′x, t′x] in the registration table where adx = ad′x and RKx = RK ′x,

then the network replaces this tuple by the tuple [adx, NNx, RKx, tx] in the registration table, where NNx

is the same set as NMx after removing from it every pseudonym that already occurs in the registration table,

and terminates the protocol.

Periodically, the network checks the registration table and discards every tuple that has not been updated for

more than 2T seconds. Note that there are three causes for a tuple [adx, NMx, RKx, tx] in the registration table

not to be updated for more than 2T seconds:

i. User x has failed or has quit the network.

ii. User x has changed its address from adx to ad′x (possibly because user x has “moved” from one location to

another).

iii. User x has changed its registration key from RKx to RK ′x (possibly to prevent its fixed registration key

RKx from becoming a fixed identity of user x).

V. CONNECTION PROTOCOL

The function of the connection protocol is to allow two users in the network to become connected to one another.

This means that (1) each of the two users knows the current address of the other user (and so the two users can

now exchange messages), and (2) the two users share a symmetric key, called their connection key CK, that they

can use to encrypt and decrypt their exchanged messages.

The connection protocol consists of three messages: a request message from any user x to the network requesting

that user x be connected to another user y followed by two reply messages from the network to the two users x

and y informing them that they have been connected.

November 22, 2010 DRAFT

8

When a user x with a pseudonym nmx wants to establish a connection with another user y with a pseudonym

nmy , user x sends to the network a request message of the form:

(adx, nmx, nmy, tx, signx)

where

adx: is the currently registered address of user x.

nmx: is a currently registered pseudonym of user x.

nmy: is a currently registered pseudonym of user y.

tx: is the real time, or timestamp, of user x when it sent the request message.

signx: is the message signature signed by the private key that corresponds to the current registration key RKx

of user x.

When the network receives a connection request message (adx, nmx, nmy, tx, signx), it executes the following

protocol:

Step 1:

If the timestamp tx in the request message is not “close” to the real time of the network, or if the network finds

no tuple in the registration table whose address is adx, then the network discards the message and terminates

the protocol.

Step 2:

If the network finds in the registration table two distinct tuples

[ad′x, NM ′x, RK ′x, t′x] and

[ad′y, NM ′y, RK ′y, t′y]

where

adx = ad′x, and

nmx ∈ NM ′x, and

nmy ∈ NM ′y , and

signN is signed by the private key that corresponds to RK ′x.

then the network does the following:

– it selects at random a symmetric connection key CK.

– it sends a reply message of the form (adx, nmx, ad′y, nmy, tx, {CK}RK′x
, signN) to ad′x.

– it sends a reply message of the form (adx, nmx, ad′y, nmy, tx, {CK}RK′y
, signN) to ad′y .

where

signN : is the message signature signed by the private key of the network, whose corresponding public key is

known to all users in network.

else the network discards the message and terminates the protocol.

November 22, 2010 DRAFT

9

TABLE II

AUTHENTICATION TABLE OF USER X

my-pseudonym my-token other-pseudonym other-token

nmx tkx nmy tky

TABLE III

AUTHENTICATION TABLE OF USER Y

my-pseudonym my-token other-pseudonym other-token

nmy tky nmx tkx

VI. AUTHENTICATION PROTOCOL

When a user x wants to communicate with another user y, user x initiates the connection protocol, presented in

Section V, in order to achieve two goals:

i. Each of the two users obtains the current address of the other user and so the two users can start to exchange

messages.

ii. Each of the two users obtains a copy of the symmetric connection key CK, and so the two users can encrypt

and decrypt all their exchanged messages.

After the connection between users x and y is established, and before x and y can start exchanging data messages

over the established connection, users x and y need to execute the authentication protocol in order that each of

them can determine whether or not the established connection is the “first” connection between x and y.

Consider the case where this established connection is not the first one between users x and y. In this case, users

x and y have agreed (as discussed in Section III) on four items in their last established connection:

nmx: is a new pseudonym for user x.

nmy: is a new pseudonym for user y.

(u1, . . . , um): is a new token for user x.

(v1, . . . , vm): is a new token for user y.

Moreover, each of the two users has stored these agreed-on four items in a local table, called the authentication

table, of the user. Table II and III show the authentication tables of user x and y. Note that each authentication

table has four attributes named: my pseudonym, other pseudonym, my token, and other token.

Thus, in this case, before user x sent a request message to initiate the current connection to user y, user x

needed to consult its authentication table in order to determine its own pseudonym and the pseudonym of user y

that needed to be included in the request message.

The authentication protocol between user x, with pseudonym nmx, and user y, with pseudonym nmy , proceeds

in seven steps as follows:

Step 1:

November 22, 2010 DRAFT

10

If user x finds in its authentication table a tuple of the form: [nmx, tkx, nmy, tky], then user x assigns to its

boolean flag connx the value true. Otherwise, user x assigns to its flag connx the value false.

Step 2:

User x sends the message {u}CK to ady where the value of u depends on the value of connx as follows. If

connx is true, then u is the token tkx in the above tuple. Otherwise, u is selected at random by user x.

Step 3:

When user y receives {u}CK from adx, then user y sends {v}CK to adx, where v is computed as follows. If

user y finds in its authentication table a tuple of the form [nmy, tky, nmx, u], then v is the token tky in the

tuple, and user y assigns its flag conny the value true. Otherwise, v is selected at random by user y, and user

y assigns its flag conny the value false.

Step 4:

When user x receives {v}CK from ady , then user x computes the value of its flag connx as follows.

If user x finds in its authentication table a tuple of the form: [nmx, tkx, nmy, v], then user x assigns its flag

connx the value true. Otherwise, user x assigns connx the value false.

Step 5: User x sends {nm′x, tk′x}CK to ady , where nm′x and tk′x are a new pseudonym and token selected

at random by user x. Then, user y sends {nm′y, tk′y}CK to adx, where nm′y and tk′y are a new pseudonym

and token selected at random by user y.

Step 6:

If flag connx is true, then user x removes the tuple [nmx, tkx, nmy, tky] from its authentication table. And,

in any case, user x adds the tuple [nm′x, tk′x, nm′y, tk′y] to its authentication table.

Also, if flag conny is true, then user y removes the tuple [nmy, tky, nmx, tkx] from its authentication table.

And, in any case, user y adds the tuple [nm′y, tk′y, nm′x, tk′x] to its authentication table.

Step 7:

If the two flags connx and conny are both true, then each of the two connected users x and y is sure that the

other user is the same one to which it was connected in the past.

Otherwise, the two flags connx and conny are both false and each of the two users x and y is sure that the

other user is a new one to which it was not connected in the past.

After executing the above authentication protocol, the two users x and y can now start to exchange data messages

encrypted using the connection key CK.

At the end of the authentication protocol, user x has a new tuple [nm′x, tk′x, nm′y, tk′y] in its authentication table,

and user y has a corresponding tuple [nm′y, tk′y, nm′x, tk′x] in its authentication table. As long as these two tuples

remain in their respective authentication tables, the two users x and y can authenticate one another correctly in the

November 22, 2010 DRAFT

11

next time they become connected in the future. However, it is possible that one of these two users, say user x, may

decide to discard the tuple [nm′x, tk′x, nm′y, tk′y] from its authentication table. In this case, the next time users x

and y become connected, their execution of the authentication protocol will indicate (incorrectly) that they (users

x and y) are connected for the first time.

Note that whenever a user x decides to drop one of its pseudonyms nmx from its pseudonym set NMx, then

user x should also drop from its authentication table any tuple where the my-pseudonym attribute has the value

nmx.

VII. DEFENDING AGAINST IMPERSONATION

In the previous sections, we have described the working of a network without identities, which we name the ITY

(Is-That-You) network. In order to use this network, the user executes three protocols: the registration, connection,

and authentication protocols. We now demonstrate how the ITY network resists an adversary. In this section, we

show the network resisting a standard attack, impersonation.

In an impersonation attack, the adversary z communicates with a user x, and causes the user x to believe,

wrongly, that the user it is communicating with is not z but some other user y. As in the ITY system, no user

knows the identity of any other user, the attack is somewhat modified. The adversary, as a user of the system, is

allowed to take the pseudonym nmy and contact a user nmx as nmy – this is normal behavior, not an attack. In

order to launch an impersonation attack, the following conditions must hold.

i. The user nmx has a relationship with a user nmy .

ii. The adversary establishes a connection with nmx, claiming to be not only some nmy , but the particular nmy

with which nmx has a relationship.

For the sake of clarity, we will refer to the particular users with pseudonyms nmx and nmy , who are the targets

of the attack, as the “correct” nmx and nmy . The adversary z has all the powers of a user of the network, and

only those powers; he cannot, for example, cause messages sent by another user to be lost.

In order to make the correct nmx authenticate him as the correct nmy , z has to come into possession of the

token (v1, v2, . . . , vm).

z can simply attempt to guess the token; this is easily rendered impractical, by choosing a token of reasonable

length – if the token has a total of l bits, the probability of guessing the token is (1
2)l, which is around 10−308 for

a 1024-bit token.

z can launch a more sophisticated impersonation attack, making use of the fact that, just as the correct nmy

must authenticate itself to nmx, the correct nmx must authenticate itself to nmy . This attack proceeds as follows.

• z takes the pseudonym nmx, and waits for nmy to try to contact the correct nmx. By random chance,

eventually, nmy gets the address of z instead of the correct nmx. In accordance with the authentication

protocol, nmy sends the token chunk v1 to z, to authenticate that it is indeed nmy .

• z makes its pseudonym nmy and requests a connection to nmx. When it gets a connection, it sends v1 to

nmx. In accordance with the authentication protocol, nmx responds with token chunk u1.

November 22, 2010 DRAFT

12

• z again takes the pseudonym nmx, and waits for nmy to try to contact the correct nmx. When nmy gets the

address of z instead of the correct nmx, it sends v1 to z. z knows u1, so it responds with u1. nmy sees the

correct response, and goes to the next step – it sends z the next chunk, v2.

. . .

• In step 2m − 1, the adversary has already obtained (u1, u2, . . . um−1) and (v1, v2, . . . vm−1). The adversary

takes the pseudonym nmx and waits for nmy to contact it. Eventually, nmy makes contact and begins to

execute the authentication protocol: it sends v1 and receives u1, then sends v2 and receives u2, and so on.

Finally, seeing the response um−1, it sends vm. Now z knows (u1, u2, . . . um−1) and (v1, v2, . . . vm). Note

that with knowledge of (v1, v2, . . . vm), z can impersonate nmy to nmx.

• In step 2m, the adversary contacts the correct nmx, and using the token (v1, . . . vm), starts a successful

impersonation of the correct nmy .

In order to show that the protocol is in fact secure, we now show that the probability of this attack being executed

successfully is exponentially small.

Theorem 1: The probability that an adversary can successfully conduct an impersonation attack is 1
23m−2 , when

there is one user nmx, one user nmy , and one adversary z.

Proof: The basis for this result is the fact that, every time the correct nmx and the correct nmy connect, their

pseudonyms and tokens change - undoing all the work of the adversary so far. The attack only succeeds if the

adversary gets all the token chunks (u1, u2, . . . um−1) and (v1, v2, . . . vm) before the correct nmx and nmy make

a single connection.

To calculate the chance of this happening, we divide the steps of the attack above into two groups. In the even-

numbered steps, (step 2, 4,...) z uses the pseudonym nmx and connects to nmy . In the odd-numbered steps, nmx

connects to z, who is using the pseudonym nmy .

In an even-numbered step, there are three equally likely possibilities.

1. The correct nmx gets a connection first (to the correct nmy).

2. The adversary gets a connection first (to the correct nmy).

3. The correct nmy gets a connection first. This has two equally likely sub-cases:

a) The connection is to the correct nmx.

b) The connection is to the adversary.

Note that in case 1 or case 3(a), the attack fails: the correct nmx and nmy achieve a connection. The probability

of success of any even-numbered step of the attack is thus 1− (1
3 + 1

3 ×
1
2) = 1

2 .

Among the odd-numbered steps, the first step is unique. The attack only begins when the first step succeeds,

so it can be considered to have a probability of 1. For any other odd-numbered step, there are two equally likely

probabilities.

1. The correct nmy gets a connection first (to the correct nmx).

2. The correct nmx gets a connection first. This has two equally likely sub-cases:

November 22, 2010 DRAFT

13

TABLE IV

CONNECTION TABLE

sender address sender pseudonym receiver address receiver pseudonym timestamp

adx nmx ady nmy tcurrent

a) The connection is to the correct nmy .

b) The connection is to the adversary.

For any case except 2(b), the attack fails. Hence the probability of success of an odd-numbered step is 1
2×

1
2 = 1

4 .

Note that the attack consists of m even-numbered steps and m− 1 odd-numbered steps, excluding the first step,

and that all of these steps must succeed (independently) for the attack to succeed.

The probability of a successful attack is thus

1× (
1
2
)m × (

1
4
)m−1 =

1
23m−2

The above proof also serves to highlight a design decision in the ITY protocol - the reason why we require that

mutual authentication of users require multiple m rounds, instead of sending the whole token as one chunk. Our

design is highly robust against impersonation attacks - for example, with a value of m = 10, the probability of a

successful impersonation attack is less than 3× 10−8.

In this section, we have assumed that the adversary alternately assumes the pseudonyms nmx and nmy . In the

following section, we deal with the case when the adversary assumes both pseudonyms at the same time; this is

known as the man-in-middle attack.

VIII. DEFENDING AGAINST MAN-IN-MIDDLE

In the previous section, we demonstrated that the ITY network is resistant to impersonation attacks. In this

section, we demonstrate the robustness of the network against another standard attack, the man-in-middle (MIM)

attack.

In the classical man-in-middle attack, the adversary z pretends to be y when talking to x, and x when talking to

y. x and y communicate, under the impression they have a secure channel; in fact, their entire communication is

visible to z. In ITY, z executes a man-in-middle attack by impersonating nmx to nmy , and nmy to nmx.

Intuitively, this seems like a harder attack than impersonation; it involves two impersonations simultaneously, so

when ITY is resistant to impersonation it should resist MIM attacks, too. Unfortunately, this attractive hypothesis

is not correct.

Consider the following attack:

• Adversary z takes both pseudonyms nmx and nmy simultaneously, and waits. Eventually, the correct nmx,

trying to contact the correct nmy , gets connected to z by chance. In accordance with the authentication protocol,

nmx sends z the token chunk u1.

November 22, 2010 DRAFT

14

• z immediately executes the connection protocol, as nmx, to get a connection to nmy . On getting nmy , he

sends u1. (If he gets another nmy , the connection fails; he immediately tries again. This continues until, by

chance, he gets the correct nmy .)

• The correct nmy sees some nmx sending it u1, and responds with v1. z responds to the correct nmx with

this v1.

• In accordance with the authentication protocol, nmx responds with u2. z forwards u2 to the correct nmy .

. . .

• The correct nmx responds to vm−1 with um. z forwards um to the correct nmy .

• The correct nmy responds with vm, which z sends to the correct nmx.

Note that, by the end of the attack, z has been authenticated (by nmy) as nmx, and (by nmx) as nmy . Thus,

even though ITY is secure against impersonation, it is not yet secure against MIM attacks.

In order to make the protocol secure against MIM, we note that the attack requires two simultaneous connections

over which authentication is going on at the same time.

Clearly, we can stop MIM attacks by requiring that the system allow at most one connection at any point in

time. However, this is not a practical idea: obviously, in a large system, it is not acceptable to disallow multiple

concurrent conversations.

We improve on the above solution, while still preventing MIM attacks, by requiring the following conditions:

• In the authentication protocol, if nmx sends a token chunk ui it must receive the corresponding vi within time

t, else it drops the connection.

• In the connection protocol, the system queues all requests for a connection. No two separate connections are

allowed to be made within a time period of 2mt.

Note that, by the above conditions, when a connection is made and the authentication protocol begins to execute,

all previous connections are already authenticated or failed. This makes it impossible for z to get a connection to

the correct nmy in time to respond to the correct nmx with v1. In other words, it is impossible to execute a MIM

attack against the ITY network.

In the last two sections, we demonstrated that ITY is proof against some important attacks. In the next section,

we look at some of the other approaches made to ensure anonymity in secure systems, and other related work.

IX. RELATED WORK

Identities in cyberspace are becoming more important than any other times. Department of Homeland Security has

posted the draft, The National Strategy for Trusted Identities in Cyberspace[1]. The draft indicates the importance

of digital identities in online transactions and provides a vision to improve online privacy with the use of trusted

digital identities and creates an identity Ecosystem. This approach is an effort to defend against security holes by

user identities. On the other hand, our approach is a completely different effort to protect identities by desigining

a system without identities.

November 22, 2010 DRAFT

15

Security in cyberspace is based on trust whether it is related with access policy[2], or information integrity

protocols[3], or reputation systems[4]. Clearly, identities facilitate trust because trusts can be developed by identities.

Thus, identities are fundamental for security in cyberspace. Though identities are convenient, they cause anonymity

loss, identity theft, and misplaced trust. In order to rectify these security holes, anonymous communications are

proposed.

The goal of anonymous communications is to obscure the association between IP addresses and the initiator

who originated the traffic. An initiator creates a path among the pool of nodes between the entry node and

the exit node and the exit node contacts the responder. The three anonymous communications are notable in

their originalities: MIX-net[5], DC-net[6], and Crowds[7]. The MIX-net is the original anonymous communication

system for untraceable anonymous email, which uses public key cryptography to hide participants and contents

of communication. DC-net is proposed for applications requiring continual deliveries with unconditional secrecy

channels while MIX-net is suitable for applications requiring only periodic deliveries like an email system. Crowds

is an application-level anonymity and uses probabilistic random forwarding and is limited in scalability due to its

sole dependence on centralized admission control server. Compared to the approaches of obscuring the association

between IP addresses and the initiator, we propose anonymous communications using pseudonyms with the three

protocols: the registration, connection, and authentication protocol.

Based on the three original anonymous communications, a number of variants are implemented in diverse

environments. First, a small and fixed nodes are used to relay traffic. For example, Tor[8] attempts to address

some of the drawbacks in Onion Routing[9] so that it provides directory servers to maintain router information for

the set of onion routers. However, this approach is not scalable due to the use of a small set of nodes. Second,

peer-to-peer nodes are used to solve the scalability problems of Tor and provides anonymity for rapidly changing

networks. APFS[10] leverages the peer-to-peer environment and provides two variants to eliminate the problems in

responder anonymity: 1) unicast communication and a central coordinator 2) multicast routing. Tarzan[11] is also a

peer-to-peer anonymous IP network overlay by extending the MIX-net with layered encryption and multihop routing.

Tarzan uses a gossip-based protocol for peer discovery for the fully connected network of nodes instead of the

centralized directory authority. This p2p-based approach is more scalable than Tor, but is still limited in scalability.

Third, DHT is used to solve scalability and security problems of the p2p-based approach. For instance, Salsa[12]

is a structured approach to organizing highly distributed anonymous communications systems for scalability and

security. Salsa is similar to Tor and selects nodes randomly from the full set of nodes with the knowledge of only

a small subset of the network by using a DHT to construct a virtual tree structure. Cashmere[13] focuses on the

problems of being fragile and short-lived in anonymous communications and selects regions in the overlay name

space as mixes and reduces the probability of a mix failure. AP3[14] is cooperative and decentralized anonymous

communication service. AP3 is similar to Crowds and uses probabilistic random forwarding and implements routing

dynamically.

Information leaks are prevalent. Information leaks over web sites using TLS are well-known[16]. One of the

major challenges of security in cloud computing is information leaks[17]. Even with the above efforts for anony-

November 22, 2010 DRAFT

16

mous communications, fundamental problems seems to exist. Information leaks are unstoppable with anonymous

communications. Mittal and Borisov[15] show information leaks over Salsa and AP3. More recently, Tran et al.

discover information leaks over Salsa and Cashmere.

Chaum[18] foresees the problems of computerization and proposes transaction systems using digital pseudonyms

to prevent privacy from big brother. Chaum proposes to use separate pseudonyms for separate transactions. But he

still had a certifying authority to say who is communicating with whom.

X. CONCLUDING REMARKS

The usual structure of networks, where users are assigned unique identities, makes communication between users

– as well as development of relationships between them – simple. But this simple structure comes at a price. Clearly,

associating a name with a user leads to loss of anonymity; there may be concerns about reputation – other users

can judge one’s actions; and the network itself may show biased behavior. Most importantly, there exist specific

attacks such as phishing and pharming, which seek to steal a user’s identity.

In this paper, we present a highly novel idea: could it be possible to design a network without identities? We

believe this is in fact, possible to do, and present the outline of a network in which users do not have identities.

Users are contacted by searching for their “pseudonyms”, which they change frequently. Authentication is done by

users themselves, not by the certification of a central authority. This system is not only completely proof against

attacks like phishing – there is no identity, hence no identity theft! – we demonstrate that it is also highly robust

against impersonation and man-in-middle attacks.

Besides the theoretical novelty of the idea, we are pleased to report that it shows considerable promise for future

research. The entire concept of a network without identities is very interesting, as it opens up the question of

inter-user relationships without external reputations; indeed, we venture to suggest that this may be a whole new

kind of network, distinct from both traditional clent-server and reputation-based peer-to-peer networks. In our own

immediate future work, we are attempting to develop our network in more detail, so that it becomes robust against

other attacks such as denial-of-service and message loss.

REFERENCES

[1] W. House, “National strategy for trusted identities in cyberspace,” June 2010.

[2] K. B. Frikken, J. Li, and M. J. Atallah, “Trust negotiation with hidden credentials, hidden policies, and policy cycles,” in NDSS, 2006.

[3] G. J. Simmons and C. Meadows, “The role of trust in information integrity protocols,” Journal of Computer Security, vol. 3, pp. 199–9,

1995.

[4] D. DeFigueiredo, E. Barr, and S. F. Wu, “Trust is in the eye of the beholder,” in Proceedings of the 2009 International Conference on

Computational Science and Engineering - Volume 03. Washington, DC, USA: IEEE Computer Society, 2009, pp. 100–108. [Online].

Available: http://portal.acm.org/citation.cfm?id=1632709.1633496

[5] D. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,” Communications of the ACM, vol. 24, no. 2, February

1981.

[6] ——, “The dining cryptographers problem: Unconditional sender and recipient untraceability,” Journal of Cryptology, vol. 1, pp. 65–75,

1988.

November 22, 2010 DRAFT

17

[7] M. Reiter and A. Rubin, “Crowds: Anonymity for web transactions,” ACM Transactions on Information and System Security, vol. 1, no. 1,

June 1998.

[8] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion router,” in Proceedings of the 13th USENIX Security

Symposium, August 2004.

[9] P. F. Syverson, D. M. Goldschlag, and M. G. Reed, “Anonymous connections and onion routing,” in Proceedings of the 1997 IEEE

Symposium on Security and Privacy, ser. SP ’97. Washington, DC, USA: IEEE Computer Society, 1997, pp. 44–. [Online]. Available:

http://portal.acm.org/citation.cfm?id=882493.884368

[10] C. Shields, “Responder anonymity and anonymous peer-to-peer file sharing,” in Proceedings of the Ninth International

Conference on Network Protocols. Washington, DC, USA: IEEE Computer Society, 2001, pp. 272–. [Online]. Available:

http://portal.acm.org/citation.cfm?id=876907.881583

[11] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer anonymizing network layer,” in Proceedings of the 9th ACM Conference on

Computer and Communications Security (CCS 2002), Washington, DC, November 2002.

[12] A. Nambiar and M. Wright, “Salsa: A structured approach to large-scale anonymity,” in Proceedings of CCS 2006, October 2006.

[13] L. Zhuang, F. Zhou, B. Y. Zhao, and A. I. T. Rowstron, “Cashmere: Resilient anonymous routing,” in NSDI, 2005.

[14] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S. Wallach, “Ap3: cooperative, decentralized anonymous communication,”

in EW 11: Proceedings of the 11th workshop on ACM SIGOPS European workshop. New York, NY, USA: ACM, 2004, p. 30.

[15] P. Mittal and N. Borisov, “Information leaks in structured peer-to-peer anonymous communication systems,” in CCS ’08: Proceedings of

the 15th ACM conference on Computer and communications security. New York, NY, USA: ACM, 2008, pp. 267–278.

[16] A. Hintz, “Fingerprinting websites using traffic analysis,” in Proceedings of the 2nd international conference on

Privacy enhancing technologies, ser. PET’02. Berlin, Heidelberg: Springer-Verlag, 2003, pp. 171–178. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1765299.1765312

[17] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: exploring information leakage in third-party

compute clouds,” in Proceedings of the 16th ACM conference on Computer and communications security, ser. CCS ’09. New York, NY,

USA: ACM, 2009, pp. 199–212. [Online]. Available: http://doi.acm.org/10.1145/1653662.1653687

[18] D. Chaum, “Security without identification: transaction systems to make big brother obsolete,” Commun. ACM, vol. 28, pp. 1030–1044,

October 1985. [Online]. Available: http://doi.acm.org/10.1145/4372.4373

November 22, 2010 DRAFT

