
From Spanning Trees to Meshed Trees
H. B. Acharya, John Hamilton, and Nirmala Shenoy

Rochester Institute of Technology

I. INTRODUCTION

Switching operations, at Layer 2 of the network protocol
stack, are fundamental to network communications. The in-
ternal networks of data centers, as well as traditional Layer 2
networks – customer, service provider, and backbone provider
networks [1], [2] – rely primarily on switching operations.

Over the last several decades, the performance and reliabil-
ity demands on such networks has grown by orders of magni-
tude. Such demands have no doubt been supported through
advances in robust and high-performance switch hardware,
transmission and media technologies [3]. However, no matter
how robust, network components still eventually fail, at which
point they cause disruptions in network operation. At the time
of failure, network resilience and fast recovery depend on
having built-in redundancy in the network, and on fast, fault-
tolerant Layer 2 protocols to take advantage of it.

A closer look reveals that there is a strong unmet need for
such protocols. While existing protocols have been regularly
updated [4], completely new protocols have not been intro-
duced in many years. At the same time, the demands placed
upon Layer-2 networks have grown enormously. This has led
to workarounds, such as layer flattening and provisioning of
massively redundant architectures.

Loop Avoidance

In this paper, we target one obvious bottleneck: the loop
avoidance protocol in switched networks. Loop avoidance
protocols are necessary to avoid broadcast storms in switched
networks, which otherwise occur as follows.
• Switches deal with broadcast frames by forwarding them

out through every available interface, other than the one
at which they arrive.

• Loops in the network topology lead to the same frame
being forwarded around the loop repeatedly. (At each
switch the frame is forwarded out all outgoing ports,
including the one taking it to the next switch in the
loop. As forwarding is stateless – i.e. the switches do
not remember whether this frame was seen before – they
continue to forward it.)

In other words, a switched network should be loop-free, to
avoid broadcast storms. However, it is hardly a good idea to
build a physical network with such a topology (a tree), as it is
highly non-resilient: the failure of any non-leaf node or edge
is sufficient to disconnect a tree network. (More formally, a
tree is 1-connected i.e., the minimum number of nodes we
must remove to disconnect a tree is 1, and 1-edge connected,
i.e. the minimum number of edges is 1 also.)

Loop-avoidance protocols allow the use of a more ro-
bust (i.e. multiply-connected) network, without the danger

of broadcast storms. The standard approach, underlying the
Spanning Tree Protocol, is to find a logical spanning tree in
the network and to block all edges that do not belong to it.
In case of failure, we need only reconfigure the tree logically
rather than having to physically repair the network. However,
the actual protocols as they exist now, are fast enough for
customer-LAN networks, but not adequate for service and
backbone provider networks (Metro Ethernet etc), or for the
backplane in a Data Center.

Towards a New Protocol

We propose to attack the loop avoidance problem with a
new protocol, the Meshed Tree Protocol (MTP). The protocol
has essentially two major ideas:
• To prevent broadcast storms, it is sufficient to make sure

that the paths used by broadcast frames do not have
loops. It is not necessary to logically delete edges from
the underlying network graph, as done in STP using
blocked ports1.
We note that blocked edges may actually be the best path
for unicast traffic, and STP prevents this from happening.

• A failure should not completely invalidate all knowledge
gained about the existing network. It is wasteful to
abandon all knowledge of existing links, just because one
link or switch has failed.

II. CURRENT WORK: ALGORITHMIC FOUNDATION

The basis of solutions to construct loop-free paths in a
switched network, is Dijkstra’s algorithm.

Algorithm 1 Dijkstra’s algorithm

procedure DIJKSTRA
Start a tree, with one vertex (root) and cost = 0.
repeat

Pick each non-tree vertex v one hop away from some
vertex in tree, u.

Find the vertex v with smallest cost.
. (Cost = cost at u + cost of hop u− v).

Add vertex v, and corresponding edge u−v, to tree.
until all vertices are in tree.

end procedure

We note that the graph here corresponds to the switched net-
work, vertices correspond to switches, and edges correspond

1In STP, the interface that connects a switch to its parent in the spanning
tree is a root port and an interface connecting a switch to another, to which
it is offering to be a parent, is a designated port. The other ports – notably,
ports connecting a switch to possible but rejected parents – are non-designated
ports; these are the blocked ports.



to links in the network. (Also, one edge connects exactly two
nodes. In other words, our model does not allow shared media
taps.)

Spanning Tree Protocol

The Spanning Tree protocol makes an adjustment to Di-
jkstra’s algorithm, by making the process of vertex selection
distributed. Each vertex, i.e. switch, attempts to extend the
tree.

Algorithm 2 Spanning Tree Protocol algorithm

procedure STP
Start a tree, with one initial vertex (root) and cost = 0.
repeat

At all tree vertices u in parallel.
Pick each non-tree vertex v one hop away from u.
Find the vertex v with smallest cost.

. (Cost = cost at u + cost of hop u− v).
Add vertex v, and corresponding edge u−v ,to tree.

until all vertices are in tree.
end procedure

In other words, while Dijkstra’s algorithm works to add
the best vertex at each step, the Spanning Tree Algorithm
adds vertices using only local decisions (each frontier vertex
independently adds children)2.

The other detail that STP adds to Dijkstra’s algorithm, is
that when choosing the lowest-cost path, ties are broken using
node id. (If there are two possible parents with same cost path
to root, the switch with lower ID is preferred as parent.)

TRILL and Shortest Path Bridging

Radia Perlman, the author of STP, in 2011 proposed a
successor: TRILL (TRansparent Interconnection of Lots of
Links) [5] protocol on RBridges (Router Bridges) [6].
• TRILL improves convergence, by computing spanning

trees for the network rooted at each switch.
• Unicast frames follow separate optimal forwarding paths,

computed between pairs of switches using the routing
functionality of the IS-IS protocol.

• Inconsistencies and loops, caused by topology changes,
are caught using hop counts.

TRILL operates as a ‘shim’ between Layers 2 and 3. A
parallel effort, initiated under IEEE 802.1Q, introduces IS-IS
link state routing into Layer 2 itself, as a component of the
Shortest Path Bridging (SPB) protocol [7] .

The underlying path-finding algorithm, again, is Dijkstra’s
algorithm (used in IS-IS routing). TRILL makes a major

2To see the difference, consider the graph (itself a tree):
A – B – C, A – D.
A – D costs 100 and the other two links cost 1.
Dijkstra’s algorithm is centralized, and is able to add the links of the

spanning tree in increasing order of weight:
A – B, B – C, A – D.
STP is distributed, and could easily add them in a different order. If A adds

a second child before B gets started, links are added in the order:
A – B, A – D, B – C.

improvement to STP, in that it allows for the pre-computation
of backup trees. TRILL introduces a very powerful new idea:
rather than waiting for a failure and starting from scratch,
alternate paths to the root are constructed in advance. This
allows for much faster recovery. However, we make two
observations regarding TRILL.
• TRILL has not achieved good market penetration. One

reason is simply licensing [8]; solutions are expensive.
Another issue is that, being a cross-layer solution, it
is heavy and slow. (It uses the Layer 3 protocol IS-IS
in Layer 2 operations; this requires encapsulation of its
messages [9].)

• TRILL is somewhat inflexible. It brings in a heavy cost in
computing spanning trees rooted at every node, in order
to provide unicast paths. Also, it takes an all-or-none
approach to backup spanning trees: it either constructs
a complete spanning tree (with the costs of keeping track
of no looping, complete coverage etc.), or nothing at all.

III. THE MESHED TREE ALGORITHM

The Meshed Tree Algorithm moves the focus from spanning
trees to paths in the network.

Algorithm 3 The Meshed Tree Algorithm

procedure MTA
Start an empty path, at one vertex (root) with cost = 0.
repeat

At all vertices u in parallel.
Pick each vertex v one hop away from u.
Find the vertex v with smallest cost.

. (Cost = cost at u + cost of hop u− v).
Offer v all known paths from u, appending v to each

path and adding the cost of the hop u− v.
Accept all new paths received at u where u does not

itself appear on the path. (Loop prevention)
Keep the best path known at u as its “chosen” path,

and send a message (“I am your child”) to the vertex which
advertised it.

until no vertex u receives any new paths
end procedure

To clarify: the “best” path, as we mention above, is the best
according to the metric of goodness used, such as hop count.

The structure created by these paths is called a meshed tree,
as unlike a spanning tree it allows multiple paths from the
root to any given vertex. A meshed tree has the following
properties.

1) Each vertex has multiple possible paths to the root. (In
fact, for the naive version of the algorithm as posted
above, it finally obtains all paths to the root.)

2) However, at a given point in time, only one path is
chosen. Note that eventually every vertex has a chosen
path.

3) All paths are loop-free, so there is no danger of broadcast
storms. (In particular, this property holds for the chosen
path at a vertex.)



Fig. 1: Meshed Trees can contain multiple Spanning Trees. []

As Fig 1 illustrates, it is simple to see that a meshed tree
is not a spanning tree (except when the underlying graph is a
tree!) However, we have an important conjecture.
Conjecture 1. The union of chosen paths at the vertices
constitute a spanning tree of the network.

This property holds under all cases in our tests, and we
aim to develop a formal proof in our future work. We now
present a few other important properties of the Meshed Tree
Protocol, based on this algorithm, and discuss its practical
implementation.

IV. PROPERTIES OF THE MESHED TREE CONSTRUCTION

The Meshed Tree Algorithm, presented in the previous
section, has the important properties of convergence and
completeness. More formally:
Theorem 1. After a finite number of steps, every vertex in the
graph has a stable chosen path.
Proof:

The graph is connected and finite (being the topology of
a switched network). In other words, the number of hops
from the root to any vertex u is finite.

Therefore, in a finite number of steps, at least one path
advertisement eventually arrives at u. As a vertex accepts
all path advertisements, u now has at least one path.

When a vertex has one or more paths, by definition, one
of these is its chosen path. Hence, after a finite number of
steps, u (and by generality, every vertex in the network)
has at least one chosen path.

Next, we consider the fact that a vertex can update its
chosen path (for example, when it receives a better path).

The graph is finite, hence there are a finite number of
paths from a vertex (again, say u) to the root.

Further, every such path is of finite length. (This is
because a path is a string with a finite alphabet – the
names of the vertices – and is loop-free, i.e. no repetition.)
In other words, if we consider any path P , it takes only
a finite number of steps for P to be propagated down
along all the vertices in the path, and reach u.

Hence, in a finite time, every possible path from u to
the root is seen at u. The best path (i.e. the shortest) is
its chosen path, and as no better path will be advertised,
it has reached a stable state. �
We have therefore proven that executing the Meshed Tree

Algorithm on a finite connected graph is guaranteed to con-
verge to a working state. (In practical terms, every switch in
the network has a stable path to the root.)

However, two concerns remain.

1) As demonstrated above, every vertex eventually settles
on a chosen path. However, we do not have a guarantee
that these paths will actually be the paths used when a
vertex forwards messages to the root.
We explain with an example. Consider if a vertex u is
parent to a vertex v, i.e. v accepted a path P from u
and made it its chosen path.
If P is the best path available to v, clearly its corre-
sponding subpath P ′ in u must not be worse than any
other path available to u. (P ′ is P minus the last vertex,
which is v.) Otherwise, the better path when extended
to v, would be superior to P , and would be the chosen
path at v – a contradiction.
However, there remains the chance of a tie. Both u and v
may have multiple best paths, and chosen path is chosen
independently by each vertex. So in the case there were
two equally good paths P ′ and Q′ at u, which were then
advertised to v as P and Q, it is possible u chose Q′ as
its chosen path with v chose P .
This is not a problem with reaching the root, as u will
still forward the frame, only along a different path than
v expects. However, the property of consistency – that
nodes are in agreement about the ranking of paths, so the
above scenario does not happen – is necessary if we are
to prove Conjecture 1. Strengthening the algorithm, so
we can guarantee consistency, is our immediate priority
for future work.

2) While the algorithm converges to a working state in



finite time, we have not yet spoken of its space or time
complexity. In fact, the naive version we consider is not
practical, as the number of possible paths in a graph is
very large and it is not feasible to store so many paths
at a vertex. (Counting the paths between two vertices in
a graph is a #P -complete problem [10].)
For a practical implementation, we must impose a limit
on the number of paths stored at a vertex, i.e. switch. We
discuss the implementation of the Meshed Tree Protocol,
a practical use of the Meshed Tree Algorithm, in the
following section.

V. THE MESHED TREE PROTOCOL.
The Meshed Tree Protocol makes one change and one

implementation decision, with respect to the Meshed Tree
Algorithm.
• The change is that each vertex (i.e. network switch) stores

only a finite number of the best known paths to the root.
In our tests, we store three paths at each vertex – sufficient
to have one chosen path and two back-ups.
As we now have a choice, this raises the question of
which paths are the best to store. At the moment we
simply store the best (shortest) 3 paths, but in future this
could be changed so a vertex stores paths that have as
little overlap as possible. (This ensures the least chance
that one upstream vertex or edge will invalidate all the
stored paths if it fails.)

• The implementation decision, is to build and propagate
paths using local coordinates, i.e. the outgoing interface
numbers at switches.
A path is implemented as what we name a VID. The
VID is a string of numbers, beginning with the Root
switch identifier (which we usually set to 1) followed by,
in order, the number of the outgoing interface on each
switch in the path. In other words, each switch a VID
was forwarded by (on its journey to the present position)
appended the outgoing interface number to the string; this
stores the entire sequence of local forwarding decisions,
from the root up to the present vertex, in the VID – and
hence the path it followed.

– There is a one-to-one and onto mapping between
VIDs and paths in the network. (In case two switches
are connected by multiple edges, there could be
multiple VIDs that refer to the same path; this is
not allowed in our network model.)

– Note that we make use of the outgoing rather than
the incoming interface number. This is necessary to
ensure that VIDs are always unique.

– VIDs offer in-built loop detection. If a switch S ever
receives a VID V that is a superstring of a VID U
which it already has, this immediately indicates that
V has travelled in a loop. (It first reached S following
the path U, then looped around and came back to S
following the remainder of the path V.)
Avoiding loops in the Meshed Tree Protocol is as
simple as discarding all such VIDs.

Using Fig. 2 we demonstrate the construction of meshed
trees in a switched network. Fig. 2A shows the physical

Fig. 2: The Meshed Tree Protocol.



meshed network with 5 switches. Switch port numbers are
noted beside links connecting the switches. The root switch is
assigned a Virtual Identifier (VID) =1 (in Fig. 2B).

Multiple non-looping paths (or branches) are propagated
through the graph as follows, using VIDs.

Fig. 2B shows one part of the meshed tree: a logical tree,
starting at the Root, and traversing the network via switch S1.
(VIDs defining this branch are shown in pink boxes.)

1) The Root has a VID 1.
2) What is the VID of S1? We start with the VID of its

parent, the Root (i.e. ‘1’). To this, we append the number
of the outgoing port on the parent where S1 is connected,
(also ‘1’). Thus, S1 has a VID of 11.

3) S3 has a VID 112, as it is connected on port 2 of S1.
4) Proceeding as above, we can construct an entire span-

ning tree defined by VIDs 1, 11, 112, 1122, 1123.
Similarly, in Fig 2C, we show another part of the meshed

tree, from the Root via switch S2, defined by VIDs 1, 12, 122,
123, 1221.

Fig. 2D shows both branches, (pink and orange) co-existing.
In this example, each switch has two paths to the Root. (In
this particular case, each switch is part of two spanning trees.)
The VIDs stored at the switches differentiate and identify the
multiple tree paths.
• Meshed Tree Protocol (MTP) allows a tree link to be

discovered with only a pair of messages between adjacent
switches. An upstream switch offers a VID on its port,
appending the outgoing port number to its own VID. The
downstream switch, if it decides to join the tree branch,
accepts. Thus the process of tree construction is simple,
and requires very little computation.

• We further note that MTP allows for considerable flexibil-
ity in its design. For instance, we can vary how a switch
decides which paths to join, (e.g. using hop count or link
costs, or disjoint paths as discussed above); the number
of VIDs a switch stores; which VID the switch chooses
for forwarding, and so on.

VI. CONCLUDING REMARKS

In this paper, we have laid out an introduction to a new loop-
avoidance protocol for switched networks, called the Meshed
Tree Protocol (MTP). Our aim is to use this protocol, both as a
fast provider of loop-free broadcast trees (to replace Spanning
Tree Protocol) in customer, service provider, and backbone
provider LAN/WAN, and as a fabric protocol in Data Center
Networks.

The Meshed Tree Procotol is flexible and low-overhead; it
maintains multiple paths in the network, and allows them to
self-organize into trees as necessary. However, before we can
recommend it as a standard replacement for Spanning Tree
Protocol, some work remains to be done.

1) Our most important challenge is to prove that, both
after initial construction and after re-construction, the
paths defined by MTP actually produce a serviceable
broadcast tree. (In other words, we must add constraints
to the protocol to guarantee consistency, as described in
Section IV.)

2) The next course of action is to benchmark an imple-
mentation of MTP versus the standard Rapid Spanning
Tree Protocol, and if possible also TRILL, to determine
performance (uptime, convergence time upon failure)
and cost (computation as well as communication). We
are currently developing a testbed on GENI for this
study.

3) Finally, we intend to develop and demonstrate MTP in
a Data Center Network, where the multiple paths of
different spanning trees can be put to good use at the
same time.

REFERENCES

[1] I. . W. Group et al., “Local and metropolitan area networks-virtual
bridged local area networks,” IEEE Std 802.1 Q-1998, 1999.

[2] “Ieee standard for local and metropolitan area networks–bridges and
bridged networks,” IEEE Std 802.1Q-2014 (Revision of IEEE Std
802.1Q-2011), pp. 1–1832, Dec 2014.

[3] “Media access control (mac) bridges,”
http://profesores.elo.utfsm.cl/ agv/elo309/doc/802.1D-1998.pdfMedia
Access Control (MAC) Bridges, 1998.

[4] W. Wodjek, “Rapid spanning tree proto-
col: A new solution from old technology,”
http://picmg.opensystemsmedia.com/PDFs/PerfTech.Mar03.pdf, 2014.

[5] R. P. J. Touch, “Transparent interconnection of lots of links
(trill): Problem and applicability statement,” http://www.ietf.org/internet-
drafts/draft-ietf-trill-prob-05.txt, September 2008.

[6] R. Perlman, “Rbridges: transparent routing,” in IEEE INFOCOM 2004,
vol. 2. IEEE, 2004, pp. 1211–1218.

[7] P. Ashwood-Smith, “Shortest path bridging ieee 802.1 aq overview,”
Huawei. Retrieved, vol. 11, 2012.

[8] T. Hollingsworth, 2013. [Online]. Available:
https://www.networkcomputing.com/networking/trills-hidden-cost

[9] P. Ashwood-Smith, “Is-is extensions supporting ieee 802.1aq shortest
path bridging.”

[10] B. Roberts and D. Kroese, “Estimating the number of s-t paths in a
graph,” J. Graph Algorithms Appl., vol. 11, pp. 195–214, 01 2007.

[11] P. M. Fernandez, “Circuit switching in the internet,” Ph.D. dissertation,
Citeseer, 2003.

[12] F. Kobuszewski, “Network world 2018,”
https://www.networkworld.com/category/network-switch/ , year =
2018.

[13] R. Mailheau, “Trends in network switch technology,”
https://planetechusa.com/blog/predictions-2017-network-switch-trends/ ,
2017.

[14] M. Seaman, “A multiple vlan registration protocol,”
www.ieee802.org/1/files/public/docs2004/MVRP-Introduction-030.pdf,
2004.

[15] “Rapid reconfiguration of spanning tree,”
http://www.ieee802.org/1/pages/802.1w.html, 1998.

[16] “Ieee standards for local and metropolitan area networks - amendment
to 802.1q virtual bridged local area networks: Multiple spanning trees,”
IEEE Std 802.1s-2002 (Amendment to IEEE Std 802.1Q, 1998 Edition),
pp. 1–211, Dec 2002.

[17] G. D. D. R. Perlman, D. Eastlake and A. G. Gai, “Rbridges: Base
protocol specification,” https://tools.ietf.org/html/rfc6325, 2011.

[18] D. G. D. S. G. A. G. Radia Perlman, Donald Eastlake, “Rbridges:
Base protocol specification (rfc 5556),” http://www.ietf.org/internet-
drafts/draft-ietf-trill-rbridge-protocol-11.txt, January 2009.

[19] D. Eastlake, “Rbridges: Trill header options,”
http://www.ietf.org/internet-drafts/draft-eastlake-trill-rbridge-options-
01.txt.

[20] “Ieee standard for local and metropolitan area networks–media ac-
cess control (mac) bridges and virtual bridged local area networks–
amendment 20: Shortest path bridging,” IEEE Std 802.1aq-2012
(Amendment to IEEE Std 802.1Q-2011), pp. 1–340, June 2012.

[21] D. Allan and N. Bragg, 802.1 aq shortest path bridging design and
evolution: The architect’s perspective. John Wiley & Sons, 2012.


