
TPP: The Two-Way Password Protocol
Taehwan Choi

Department of Computer Science
The University of Texas at Austin

Email: ctlight@cs.utexas.edu

H. B. Acharya
Department of Computer Science
The University of Texas at Austin

Email: acharya@cs.utexas.edu

Mohamed G. Gouda
National Science Foundation

The University of Texas at Austin
Email: mgouda@nsf.gov

Abstract—The need for secure communication in the Internet
has led to the widespread deployment of secure application-
level protocols. The current state-of-the-art is to use TLS, in
conjunction with a password protocol. The password protocol,
which we call a one-way password protocol (OPP), authenticates
a user to a server, using a particular secret called the password.
TLS has two functions: (1) It ensures secure communication
between a client and a server (2) It allows a user to authenticate
a server. The first function effectively provides a secure channel
for end-to-end communication between a client and a server.
However, the second function is frequently compromised by a
variety of Phishing attacks. In this paper, we address this problem
by developing a password protocol which we name the Two-way
Password Protocol (TPP). TPP, when used in conjunction with
TLS, ensures that users correctly authenticate servers, and are
protected from Phishing attacks. The first contribution of this
paper is to develop a protocol, called the Universal Password
Protocol (UPP), which ensures that a user’s password is kept
safe even in the case of a successful Phishing attack. However, it
may be noted that a user, after logging in, frequently shares other
secrets (such as credit card number) over the secure connection,
and UPP cannot protect these. Our second contribution is to
build on UPP and develop, first, the Two-Way Password Protocol
(TPP), and finally an improved version named the Dynamic Two-
Way Password Protocol (DTPP), which ensures that both a server
and a client are properly authenticated to each other. This ensures
the security of all secrets which should be known only to the client
and the server, including, of course, the password.

I. INTRODUCTION

A problem of immense importance in any scenario where
users, with different privileges, use a system, is authentication.
Clearly, it is necessary for a party, that controls access to a
resource, to verify the identity of the party requesting access;
otherwise, there is no way to determine which requests to
allow, and which to deny. Thus, authentication is essential
whenever an entity provides specific other parties with access
to special resources – for example, by sharing secrets with
them. A major application of this is seen in the use of
secure remote protocols in the Internet, where the resources
provided range from email to auctions to banking. In general,
authentication on the Internet involves two parties: a user and
a server.

The current state-of-the-art in providing online authentica-
tion involves a combination of two protocols: the Transport
Layer Security protocol, or TLS [1], and a simple password
protocol, which we have named the One-Way Password Pro-
tocol OPP. TLS certifies to the user that the server is not
spoofing, i.e. presenting a false address; it also ensures that

a user and a server have a cryptographically secure channel
of communication. OPP authenticates the user to the server.

Unfortunately, this combination is not enough to ensure
security against some classes of attack. For example, by simple
human error, or by use of a Phishing attack, a user U may end
up going to a malicious server M (say eebay.com) instead of
the actual server S she has a relationship with (in this case,
ebay.com). TLS does not protest – the site is not spoofing; the
address bar indeed says eebay.com, which is correct. OPP is
useless here; it authenticates a user to a server, not a server
to a user. Thus, the adversary M can harvest secrets from U
– most importantly the password authenticating U to S, but
also other secrets she might share with S, such as credit card
number, home address, and so on.

Earlier work in the area of providing security against such
attacks, such as the TLP protocol, have focused how to
strengthen TLS so that it can defend against these attacks.
In the system developed by Choi et al. [2], TLP must be used
for the first login into a secure page; TLS can be used to
authenticate pages subsequently reached from a secure page.

In this paper, we study the problem of ensuring secure
authentication that is robust against Phishing attacks (and
related problems such as user error). We achieve this goal
using the standard TLS protocol, simply by modifying the
password protocol so it achieves two-way authentication be-
tween a server and a user. Our solution is developed step
by step. We start with OPP and modify it to the server
password protocol (passwords for a user on a server and for
a server on a user). This simple protocol can be defeated by
using a Phishing attack in conjunction with a Man-In-The-
Middle attack. Hence, we modify it and develop the Universal
Password Protocol UPP, which is adequate for the purpose of
protecting passwords. (It may be noted in passing that UPP
also solves the problem of password reuse – the user only
has to remember one password for access to all secure sites,
without the problem of reusing a password at multiple servers.)
However, we note that even UPP can be beaten: a malicious
server can simply log the user in, and steal other secrets from
her, when it fails to obtain her password. In answer to this
problem, we develop the Two-Way Password Protocol TPP
and improve it to our final version, the Dynamic Two-Way
Password Protocol DTPP. DTPP ensures that all the secrets
shared between a user and a server – and in particular the
user’s password on the server – are secure from Phishing
attacks.



We begin with a detailed description of TLS and the current
state of the art, in the following section.

II. BACKGROUND

Before a user U can communicate with a secure website S
over the web, both U and S need to authenticate one another
by executing two protocols: the standard TLS protocol [1]
which allows U to authenticate S, and a usually one-way
password protocol which allows S to authenticate U . For
completeness, in this section we briefly review the standard
TLS protocol.

A certificate of a website S is a data structure that has the
following format:

(R,S,KS , t, sig)
where R is an issuer, S is a website, KS is a public key of
S, t is an expiration date, sig is a signature.

This certificate can be viewed as the statement “R asserts
that the public key of website S is KS , from now until date
t.” When a user U receives this certificate, U needs to perform
two checks. First, U needs to check that the certificate is
current by checking that the expiration date t has not yet been
reached. Second, U needs to check that the certificate is valid
by using the signature of the certificate, as discussed below, to
validate that R has indeed issued the certificate. If C concludes
that the certificate is both current and valid, then C accepts
that KS is the public key of S.

The signature of the certificate is computed by the issuer R
as follows:

sig := K−1
R < H(R,S,KS , t) >

where K−1
R is the private key of R, H is a standard secure

hash function, H(R,S,KS , t) is the result of applying the
hash function H to the concatenation of the four items R, S,
KS , and t in the certificate, and K−1

R < H(R,S,KS , t) > is
the encryption of H(R,S,KS , t) using the private key K−1

R
of issuer R.

When a client C receives this certificate, C needs to use
the signature of the certificate to validate that R issued the
certificate. To perform this check, client C needs to know a
priori the public key KR of issuer R. (Public keys from trusted
Certification Authorities, for example “Verisign”, come pre-
loaded with all browsers in use today.) User C performs this
check as follows:

1) Client C decrypts the signature of the received certificate
using the public key KR of issuer R.

2) Client C applies the secure hash function H to (the
concatenation of) the four fields R, S, KS , and t in
the certificate.

3) If the values computed in the two previous steps are
equal, then user C concludes that R has indeed issued
the received certificate. Otherwise, client C concludes
that R has not issued the certificate.

We will now present the execution of a simple scenario of
the TLS protocol. A client C and a server S are executing the
protocol, using the certificate of S.

C → S : client-hello(nc)
C ← S : server-hello(ns),

certificate((R,S,KS , t, sig))
C → S : key-exchange(KS < pms >),

finished(H(nc, ns, pms,ms))
C ← S : finished(H(ns, nc, pms,ms))

where nc is a nonce selected at random by client C and sent
in the clear to website S, ns is a nonce selected at random by
website S and sent in the clear to client C, pms is a premaster
secret selected at random by client C and sent in private to
website S after it is encrypted by the public key KS of S,
and ms is the master secret computed by both client C and
website S using the three values nc, ns, and pms.

The key-exchange(KS < pms >) message, sent from C
to S in the third step of this scenario, is intended to challenge
S, if it is indeed S, to use its private key K−1

S to decrypt
the message, obtain the premaster secret pms, and use pms
to compute the master secret ms. When client C checks, in
the fourth step, that S was able to correctly compute ms, C
knows that it is indeed communicating with S.

The finished(H(nc, ns, pms,ms)) message, sent from C
to S in the third step of this scenario, is intended to assure
website S that client C was able to compute the master secret
ms correctly. Similarly, the finished(H(ns, nc, pms,ms))
message, sent from S to C in the fourth step of this scenario, is
intended to assure client C that website S was able to compute
ms correctly.

At the end of this execution, the following two outcomes
are achieved.

1) Client C knows that it is indeed communicating with
website S.

2) Both C and S agree on a master secret ms that they
can use to encrypt and decrypt all the messages that
they need to exchange next.

Note that the authentication is not symmetric: server S does
not know the client with whom it is communicating. In order
to make up for this shortcoming, TLS is usually paired with
a simple password protocol to authenticate client C to server
S.

Unfortunately, this arrangement is not adequate to provide
security. In the next section, we show that despite the security
provided by the TLS protocol, there exist attacks that can
circumvent the security provided by a combination of TLS
with normal password authentication.

III. THE ONE-WAY PASSWORD PROTOCOL

In this section, we argue that the authentication procedure
that is based on the standard TLS protocol and the traditional
one-way password protocol are vulnerable to Phishing attacks.

After executing the TLS protocol as in section II, and in
order for S to know user U with whom it is communicating,
U and S execute the following two steps of the one-way
password protocol. (Note that the messages exchanged in these
two steps are encrypted using the master secret ms that is
computed in the TLS protocol.)



U ← S : ms < enter (user id, password) >
U → S : ms < (U, pw) >

Prior to executing these two steps, user U has registered the
pair (U,H(pw)) in website S where pw is a password of U .
Thus, when S receives the message ms < (U, pw) > from U ,
S concludes that it is indeed communicating with user U .

Clearly, OPP ensures that the user is authenticated to the
server. TLS ensures that the server is authenticated to the user’s
browser; when the URL for site S is displayed in the location
bar of the browser, the user is indeed at site S.

However, the combination of OPP and TLS has one subtle
weakness. Authenticating the server to the user’s browser is
not the same as authenticating the server to the user. In fact,
an adversary M can defeat this security measure simply by
not spoofing (i.e. M does not claim to be at the URL of server
S) and using other means to make the user U associate M
with S.

We will now describe an example of a Phishing attack that
can defeat the two authentication protocols, the TLS protocol
and the one-way password protocol, discussed above.

Simple Phishing Attack:
A user U receives the following email:

“For being a good customer of the website https://www.
ebay.com, we offer you a special deal. Please log into the
website https://www.specialdeals.com to check out our
great deal to you.”

From now on, we refer to the website https://www.ebay.
com as website S, and we refer to the website https://www.
specialdeals.com as website M .

Excited by this email, user U proceeds to log into website
M . First, the TLS protocol is executed between client C
of user U and website M so that U can be certain that
it is indeed communicating with M . Second, M sends to
U the message ms < enter (user id, password) >, but this
message is displayed on a webpage that has the same logo
and graphics as that of website S. Third, user U enters into
the displayed webpage his user id U and his password pw,
which U has registered earlier in website S. Fourth, user U
receives from website M a webpage that offers U to purchase
a good collection of DVDs for a cheap price and instructs U to
enter his credit card number if he is interested in purchasing
this collection. Fifth, user U decides to purchase the DVD
collection and enters his credit card number into the webpage.

Unfortunately for user U and website S, website M is not
related in any way to website S. (The fact that sites S and M
belong to different domains, as site S belongs to the domain
ebay.com and site M belongs to the domain specialdeals.com,
should have implied that these two sites are not related.) In
fact, M is an adversarial website that has just launched a
successful Phishing attack against user U and website S and
obtained the pair (U, pw), which user U has registered earlier
in website M , along with the credit card number of user U .

After obtaining this information, website M can launch two
more attacks against user U and website S.

1) A User Impersonation Attack:

Using the pair (U, pw), M can successfully log into
website S pretending to be user U .

2) An Identity Theft Attack:
Using the credit card number of U , M can purchase
many items over the web.

This Phishing attack is successful because neither the TLS
protocol nor the one-way password protocol attempted to
authenticate the fact that websites S and M are related to
one another.

IV. THE SERVER PASSWORD PROTOCOL

In the previous section, we see clearly that the standard
practice (of using OPP and TLS) can be broken by Phishing
attacks. However, we note that the use of OPP in conjunction
with TLS does in fact ensure that the following two conditions
hold:

1) The server is in fact the server whose address is currently
displayed in the user’s address bar.

2) The user is authenticated to the server.
The problem is that the server is not properly authenticated to
the user; user U can be sure that it is indeed communicating
with server M , but has no way of knowing whether M is in
fact associated with server S with which U has a relationship
of trust.

We note that the user is properly authenticated to the server.
This asymmetry is caused by the fact that OPP checks to make
sure that the user has the correct password to log on to the
server, but there is no corresponding check for the server.

Based on the above observation, it is natural to ask whether
simply making the password protocol more symmetric would
solve the problem. Just as the user is authenticated to the server
by knowledge of a password, the server is authenticated to
the user by knowledge of a secret called the server password.
(For example, a server password can be a unique image, a
phrase etc.) The user stores the server password on server
S. In subsequent interaction, S authenticates itself to U by
sending U its server password.

We name this protocol the server password protocol, and
show its working below.

User U stores in website S the triplet:
(U, ps,H(pw))

where U is a user id, ps is a server password, and pw is a
password of user U .

U ↔ S : execute TLS and compute ms
U ← S : ms < enter user id >
U → S : ms < U >
U ← S : ms < ps, enter password >
U → S : ms < pw >

Unfortunately, the attractive hypothesis, that this protocol is
robust against Phishing attacks, is incorrect. We demonstrate
that a Phishing attack, combined with a Man-In-The-Middle
attack, succeeds in compromising the site-key password pro-
tocol.

Phisherman in the Middle Attack:



1. U ↔ M : execute TLS and compute ms
2. M ↔ S : execute TLS and compute ms′

3. M ← S : ms′ < enter user id >
4. U ← M : ms < enter user id >
5. U → M : ms < U >
6. M → S : ms′ < U >
7. M ← S : ms′ < ps, enter password >
8. U ← M : ms < ps, enter password >
9. U → M : ms < pw >
10. M → S : abort login procedure
11. U ← M : ms < enter credit card # >
12. U → M : ms < cc >
13. M : gets both pw and cc

The reason for the insecurity of this protocol, is that both
authentications (a user to a server and a server to a user) do not
happen simultaneously. At some step, one party, the user or
the server, has to take a “leap of faith” and go first, sending its
secret (password or server password, respectively) to the other
party before it is authenticated. In this case, it is the server
that sends its server password to the user before it has seen
the user password; consequently, the adversary M can obtain
the server password from S and break the protocol, as shown
above.

V. THE UNIVERSAL PASSWORD PROTOCOL

In this section, we present a protocol, called the Universal
Password Protocol, which ensures that the password of U on
S cannot be stolen by Phishing attacks. The primary idea is
that the user only has to remember one universal password;
the password for a server is generated when needed.

User U stores in website S the triplet:

(U, ps,H(pw))

where U is a user id, ps is a server password, and the password
pw is computed as follows.

pw := H(upw, ds)

where H is a standard secure hash function, upw is the uni-
versal password of user U , ds is the domain name of web site
S (for example if S is the website https://www.amazon.com,
then ds is amazon.com), and H(upw, ds) is the application
of function H to the concatenation of the universal password
upw of user U , and the domain name ds of server S.

The execution of the universal password protocol proceeds
as follows:

U ↔ S : execute TLS and compute ms
U ← S : ms < enter user id >
U → S : ms < U >
U ← S : ms < ps, enter password >
U → S : ms < H(upw, ds) >

It may be noted that the user sends the server its password to
authenticate itself, but the server stores only the secure hash
of the password. The reason for this measure is to ensure
that, even if the server is compromised – for example, by
disgruntled employees – and the store of hashed passwords is

stolen, the attacker cannot start using this database of stolen
passwords to impersonate U .

We can now make a very interesting observation. As TLS
prevents spoofing, U knows the domain name of M , and will
use dm rather than ds to compute the password sent to server
M ; consequently, M cannot learn the password of U on S by
means of Phishing attacks.

However, this protocol, while perfectly adequate for the
purpose of protecting the password of U , does not serve to
protect any other secrets shared between U and S.

To see why, we consider the following subtle Phishing
attack.

The Persevering Phisherman Attack:

1. U ↔ M : execute TLS and compute ms
2. M ↔ S : execute TLS and compute ms′

3. M ← S : ms′ < enter user id >
4. U ← M : ms < enter user id >
5. U → M : ms < C >
6. M → S : ms′ < C >
7. M ← S : ms′ < skc, enter password >
8. U ← M : ms < skc, enter password >
9. U → M : ms < H(upw, dm) >
10. M → S : abort login procedure
11. U ← M : ms < enter credit card # >
12. U → M : ms < cc >
13. M : gets cc

On close observation, we see that the weakness in UPP is
again due to the problem that authentication of U to S and of
S to U does not happen in a single step, and consequently,
there remains a possibility that the server password of S can
be stolen.

However, we have seen in UPP that, by incorporating the
domain name ds of server S into the password, we can protect
the password from being stolen by the adversary: M can get
a password, but it will not be the password of U on S. It is
natural to ask if the same idea, using ds in the server password
of S, can protect the server password from being stolen and
used by M . We develop this idea in the following section.

VI. THE TWO-WAY PASSWORD PROTOCOL

In the previous section, we demonstrated that while UPP
is adequate for protecting passwords, the security of a system
using UPP can still be compromised by an adversary using
a more subtle attack, which we call the Persevering Phishing
attack. A secure session involves not only the password, but
also other secrets; even if the adversary M cannot acquire the
password, it can acquire the other secrets shared between U
and S – such as the credit card number of U .

In this section, we address this vulnerability to develop a
more advanced version of our protocol, which we call the
Two-Way Password Protocol (TPP). This protocol ensures that,
unlike in UPP, the malicious server M cannot simply pass on
to U a server password from S. Thus, TPP (in conjunction



with TLS to prevent spoofing) protects not only the password,
but also any other secrets shared between U and S.

The fundamental insight behind this protocol is the fact
that the hash of the user’s password H(pw), stored on the
server, can in fact itself be used as a server password. In our
exposition on UPP, we showed how password pw can be made
site-specific by incorporating the server domain name ds. By
using H(pw) as the server password of S, we make the server
password domain-specific also. To authenticate itself to U , the
adversary server M needs to produce the corresponding server
password H2(upw, dm). But M cannot obtain this server
password: its value is not present on server S (because S stores
H2(upw, ds), not H2(upw, dm)) and M cannot calculate it
without knowledge of upw (which U does not share). Hence
we solve the problem of the server M stealing the server
password of S and authenticating itself to the user.

User U stores in website S the pair:

(U,H(pw))

where U is a user id, and pw is computed as discussed in the
Universal password protocol in the previous section.

pw := H(upw, ds)

U ↔ S : execute TLS and compute ms
U ← S : ms < enter user id >
U → S : ms < U >
U ← S : ms < H2(upw, ds), enter password >
U → S : ms < H(upw, ds) >

The Failure of Phishing Attack:

1. U ↔ M : execute TLS and compute ms
2. M ↔ S : execute TLS and compute ms′

3. M ← S : ms′ < enter user id >
4. U ← M : ms < enter user id >
5. U → M : ms < U >
6. M → S : ms′ < U >
7. M ← S : ms′ < H2(upw, ds),

enter password >
8. U ← M : The attack fails at this point

since M cannot compute
ms < H2(upw, dm) >
to send it to U

VII. THE DYNAMIC TWO-WAY PASSWORD PROTOCOL

In the previous section, we demonstrated the Two-way
password protocol, which is secure against even sophisticated
Phishing attacks. For all practical purposes, the Two-way
password protocol achieves our goal of being immune to
Phishing attacks.

However, unlike some advanced login protocols such as
TLP [2], the Two-way password protocol does not have the
feature of one-time login data. In TLP, the login data needed
to authenticate U to S is updated on each login, so even if an
adversary manages to acquire the login data of U to S, the
stolen data becomes useless after the next login of U into S.

Under the assumption of secure TLS, the password is
secure in TPP – it is only sent to the authenticated server
S, and is encrypted to make sure that it cannot be stolen
by an eavesdropping attack. However, in practice, there do
exist attacks that break the security assumptions of TLS; for
example, the root certificate authorities accepted by browsers
are not always trustworthy. A password protocol cannot protect
against such an attack (where TLS is broken and the attacker
M can spoof as S). However, in order to minimize the damage
if even such an attack is carried out, we incorporate into the
Two-way protocol the additional feature of one-time login
data. The secrets needed to authenticate U to S, and S to
U , are updated on each login; hence, even if the adversary
does manage to steal the password of U , the stolen password
is only useful until the next time U logs into S. We call this
final version of our protocol the two-way password protocol,
TPP.

User U stores in website S the triplet:

(U, ni,H(pwi))

where U is a user id, ni is (the i’th value of) a nonce chosen
by the user, and pwi is

H(upw, ni, ds)

where upw is the universal password of user U and ds is the
domain name of server S.

U ↔ S : execute TLS and compute ms
U ← S : ms < enter user id >
U → S : ms < U >
U ← S : ms < ni,H2(upw, ni, ds), enter password >
U → S : ms < H(upw, ni, ds), ni+1,H2(upw, ni+1, ds) >

We see that the working of the Two-way password protocol
is almost exactly similar to that of the Two-way password
protocol. The main difference is that the password is not some
fixed pw, but pwi: it varies with each login.

Server S stores the last value of the nonce ni and the
corresponding H(pwi). When user U tries to log in, she is
given her ni as well as the corresponding H(pwi). As U
knows H, upw, ni, and ds, she can check that H(pwi) is
correct, and authenticate the server. Now she chooses the
next value of the nonce to be ni+1. In the last step, she
sends to the server the password pwi = H(upw, ni, ds)
(so user is authenticated to server), and the pair ni+1 and
H2(upw, ni+1, ds), i.e. H(pwi+1). S replaces the stored ni

and H(pwi) with ni+1 and H(pwi+1); these values will be
used the next time a user tries to log in with user name U .
Thus, the password and server password change with every
use in this protocol.

VIII. RELATED WORK

Secure remote authentication of parties over the Internet
is an extremely important problem, and has been the focus
of considerable research. In this section, we discuss a few
relevant protocols, and specify the contribution of this paper
in the context of earlier work.



As TPP is a password protocol, it is most natural to
consider it in the context of earlier password protocols. From
the development of the protocol, it is clear that the most
interesting feature of TPP is its immunity to Phishing attacks,
which break ordinary password protocols, simple challenge-
handshake authentication protocols such as site key [3] and
message digest protocols [4], and hash-based protocols [5].

However, TPP, thanks to its use of a universal password,
has several other highly desirable features. Early password
protocols such as Lamport’s [6] and Rubin’s [7] one-time
password protocols are forced to use a list of passwords, which
the client uses one time only, to guard against the threat of
eavesdropping attacks. This, of course, leads to the serious
inconvenience of having to remember and register a huge list
of passwords. On the other hand, protocols that depend on one
central server to authenticate clients for multiple servers [8]
have a single point of failure and require a high cost of
integration. TPP circumvents all of these problems; it ensures
that login data is for one-time use only, but requires the
user to remember only one (strong) password, and, unlike the
Passpet system [9], does not require any external server for
authentication.

Another important feature of TPP is that it uses no exotic
computation such as modular exponentiations etc; the only
required computation, (in addition to the standard encryp-
tion/decryption done by TLS) is the computation of one
secure hash at the client and one at the server. Thus, it
does not use any non-standard operations or require much
processing power, unlike other strong password protocols such
as EKE [10] and SRP [11]. Moreover, as it is built to be used in
conjunction with TLS, it benefits directly from improvements
to TLS. For example, TLS is currently being upgraded to use
SRP as an underlying layer. This will improve the security of
TLS, and thus strengthen a system running TPP, as any such
system also runs TLS.

The closest ancestor to TPP is our own earlier proto-
col SPP [12]. However, SPP is a single password protocol,
whose aim is simply to safeguard the user’s single (universal)
password. Thus, SPP is vulnerable to subtle attacks that try
to steal other secrets besides the user’s password (such as
the Persevering Phisherman attack). TPP provides complete
protection of all secrets from Phishing attacks.

IX. CONCLUDING REMARKS

Standard authentication over the web, using TLS and a
password protocol, is easily compromised by user error and
Phishing attacks. In this paper, we present a strong pro-
tocol, UPP, which ensures that the user’s password cannot
be compromised. Next, building on UPP, we develop TPP
and finally DTPP, a password protocol which (in conjunction
with TLS) provides mutual authentication between client and
server, and protects all shared secrets between client and server
from Phishing attacks. It may be noted that this protocol is
fairly lightweight; it takes only four messages (the original
password protocol itself takes two), and imposes little addi-
tional computational or storage load on the client or on the

server. We suggest that, given the widespread prevalence of
Phishing attacks [13], there is good reason to deploy the TPP
protocol and replace the one-way passwords that are used on
the Internet today.

REFERENCES

[1] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), Internet
Engineering Task Force, Aug. 2008, updated by RFCs 5746, 5878,
6176. [Online]. Available: http://www.ietf.org/rfc/rfc5246.txt

[2] T. Choi, S. Son, M. G. Gouda, and J. A. Cobb, “Pharewell to phishing,”
in Proceedings of the 10th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, ser. SSS ’08, 2008, pp.
233–245.

[3] J. Youll. (2006) Fraud vulnerabilities in sitekey security at
bank of america. [Online]. Available: www.cr-labs.com/publications/
SiteKey-20060718.pdf

[4] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,
A. Luotonen, and L. Stewart, “HTTP Authentication: Basic and
Digest Access Authentication,” RFC 2617 (Draft Standard), Internet
Engineering Task Force, Jun. 1999. [Online]. Available: http:
//www.ietf.org/rfc/rfc2617.txt

[5] J. A. Halderman, B. Waters, and E. W. Felten, “A convenient method for
securely managing passwords,” in Proceedings of the 14th international
conference on World Wide Web, ser. WWW ’05, 2005, pp. 471–479.

[6] L. Lamport, “Password authentication with insecure communication,”
Communications of the ACM, vol. 24, pp. 770–772, November 1981.

[7] A. D. Rubin, “Independent one-time passwords,” in Proceedings of the
5th conference on USENIX UNIX Security Symposium - Volume 5, 1995,
pp. 15–15.

[8] Microsoft. (2010) .net passport. [Online]. Available: http://www.
passport.net

[9] K.-P. Yee and K. Sitaker, “Passpet: convenient password management
and phishing protection,” in Proceedings of the second symposium on
Usable privacy and security, ser. SOUPS ’06, 2006, pp. 32–43.

[10] S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-
based protocols secure against dictionary attacks,” in IEEE SYMPO-
SIUM ON RESEARCH IN SECURITY AND PRIVACY, 1992, pp. 72–84.

[11] T. Wu, “The secure remote password protocol,” in In Proceedings of
the 1998 Internet Society Network and Distributed System Security
Symposium, 1998, pp. 97–111.

[12] M. G. Gouda, A. X. Liu, L. M. Leung, and M. A. Alam, “Spp: An
anti-phishing single password protocol,” Computer Networks, vol. 51,
pp. 3715–3726, September 2007.

[13] Trusteer. (2009) Measuring the effectiveness of in-the-wild phishing
attacks. [Online]. Available: http://www.trusteer.com/sites/default/files/
Phishing-Statistics-Dec-2009-FIN.pdf

View publication stats

https://www.researchgate.net/publication/224256495

