
Firewall Verification and Redundancy Checking are
Equivalent

H. B. Acharya
University of Texas at Austin

acharya@cs.utexas.edu

M. G. Gouda
National Science Foundation
University of Texas at Austin

mgouda@nsf.gov

Abstract—A firewall is a packet filter that is placed at the
entrance of a private network. It checks the header fields of each
incoming packet into the private network and decides, based on
the specified rules in the firewall, whether to accept the packet
and allow it to proceed or to discard the packet. To validate the
correctness and effectiveness of the rules in a firewall, the firewall
rules are usually subjected to two types of analysis: verification
and redundancy checking. Verification is used to verify that the
rules in a firewall accept all packets that should be accepted
and discard all packets that should be discarded. Redundancy
checking is used to check that no rule in a firewall is redundant
(i.e. can be removed from the firewall without changing the sets of
packets accepted and discarded by the firewall). In this paper we
show that, contrary to the conventional wisdom, these two types
of analysis are in fact equivalent. In particular, we show that (1)
every verification algorithm can be also used to check whether a
rule in a firewall is redundant, and (2) every redundancy checking
algorithm can be also used to verify whether the rules in a firewall
accept or discard an intended set of packets.

I. INTRODUCTION

A firewall is a packet filter that is placed at a point where
a private computer network is connected to the rest of the
Internet. The firewall intercepts each packet that is exchanged
between the private network and the Internet, examines the
fields of the packet headers, and makes a decision to either
accept the packet and allow it to proceed on its way, or discard
the packet.

The decision that a firewall makes, when it receives a packet,
depends on two factors:

1) The values of the fields in the packet headers
2) The sequence of firewall rules that is specified by the

firewall designer
A firewall rule consists of a predicate and a decision, which

is either accept or discard. When the firewall receives a packet,
the firewall searches its sequence of rules for the first rule,
whose predicate is satisfied by the values of the fields in the
packet headers, and then applies the decision of this rule to
the packet.

Note that there are two sets of packets that are associated
with each firewall: the set of all packets that are accepted by
the firewall, and the set of all packets that are discarded by
the firewall.

A firewall property, like a firewall rule, consists of a
predicate and a decision, which is either accept or discard.
A firewall is said to satisfy a property iff one of the following
two conditions holds:

(a) The decision of the property is accept and the firewall
accepts every packet that satisfies the predicate of the
property

(b) The decision of the property is discard and the firewall
discards every packet that satisfies the predicate of the
property

Two firewalls are equivalent iff they accept the same set of
packets and discard the same set of packets.

A rule in a firewall is said to be redundant iff removing the
rule from the firewall yields a firewall that is equivalent to the
original firewall.

After the rules of a firewall are designed (by a firewall
designer), they are usually validated by subjecting them to
two seemingly different algorithms: a verification algorithm
and a redundancy checking algorithm. The function of the
verification algorithm is to verify that the firewall rules accept
all packets that should be accepted and discard all packets
that should be discarded. The function of the redundancy
checking algorithm is to check whether any rule in the firewall
is redundant.

Figure 1 shows an outline of a firewall verification algo-
rithm. It takes as input a firewall F and a property r and
produces as output a determination of whether F satisfies r.

Figure 2 shows an outline of a firewall redundancy checking
algorithm. It takes as input a firewall F and a rule r in F and
produces as output a determination of whether r is redundant
in F (and so should be removed from F).

Up until now it has been thought that these two types of
algorithms, verification algorithms and redundancy checking
algorithms, are quite different becuase they solve quite differ-
ent problems. But we show in this paper that this is not the
case. In particular, we show the following two results:

(i) Any verification algorithm can be also used as a subrou-
tine in checking whether a given rule in a given firewall
is redundant in this firewall. This result is illustrated in
Figure 3.

(ii) Any redundancy checking algorithm can be also used
as a subroutine in verifying whether a given firewall
satisfies a given property. This result is illustrated in
Figure 4.

These two results indicate that the two important problems
of firewall verification and firewall redundancy checking are
equivalent and any progress that one can achieve in solving

This paper was presented as part of the main technical program at IEEE INFOCOM 2011

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 2123

either problem can be regarded also as a progress in solving
the other problem.

Fig. 1. Firewall verification algorithm.

Fig. 2. Firewall redundancy checking algorithm.

Fig. 3. Using verification in redundancy checking.

Fig. 4. Using redundancy checking in verification.

II. PACKETS, RULES, FIREWALLS, AND PROPERTIES

In this section, we define the main four terms in this
paper: packets, rules, firewalls, and properties. We start our
presentation by introducing the concept of a field.

A field is a variable whose value is taken from a nonempty
interval of non-negative integers called the domain of the field.

In this paper, we assume that there are d fields, named f1,
.., and fd, in the headers of each packet. (Examples of these
fields are the source IP address, the destination IP address, the
transport protocol, the source port number, and the destination
port number.)

The domain of each field fj is denoted D(fj).
A rule r is of the form:

r : f1 ∈ X1 ∧ .. ∧ fd ∈ Xd →< decision >

Note that r is the name of the rule, each fj is a field, each Xj

is a nonempty interval of nonnegative integers taken from the
domain D(fj) of field fj , and < decision > is either accept
or discard.

A rule whose decision is accept (or discard, respectively) is
called an accept rule (or discard rule, respectively).

A packet p is a tuple (p1, .., pd) of d nonnegative integers,
where each integer pj is taken from the domain D(fj) of field
fj .

A packet (p1, .., pd) is said to match a rule r of the form:

r : f1 ∈ X1 ∧ .. ∧ fd ∈ Xd →< decision >

iff the predicate (p1 ∈ X1 ∧ .. ∧ pd ∈ Xd) is true.
A firewall is a nonempty sequence of rules.
A packet is said to match a firewall F iff the packet matches

at least one rule in F .
A firewall F is called complete iff every packet matches F .

A firewall F is called partial iff some packet does not match
F .

A rule r is called a full rule iff it is of the form:

r : f1 ∈ X1 ∧ .. ∧ fd ∈ Xd →< decision >

where each interval Xj is the domain D(Fj) of field Fj . Note
that every packet matches any full rule. Thus, each firewall
that has a full rule is complete.

A firewall F is said to accept (or discard, respectively) a
packet p iff F has an accept (or discard, respectively) rule r
such that the following two conditions hold:

1) p matches r
2) p does not match any rule that precedes r in F

A firewall F is said to ignore a packet p iff p matches no
rule in F .

Note that a complete firewall ignores no packet whereas a
partial firewall ignores at least one packet.

Note also that for any given firewall F and any given packet
p, exactly one of the following three statements holds:

(a) F accepts p
(b) F discards p
(c) F ignores p

Two firewalls F and G are said to be equivalent iff for every
packet p, exactly one of the following three statements holds:

1) Both F and G accept p
2) Both F and G discard p
3) Both F and G ignore p

A property s has the same form as a rule in a firewall:

s : f1 ∈ Y1 ∧ .. ∧ fd ∈ Yd →< decision >

Note that s is the name of the property, each fj is a field, each
Yj is a nonempty interval of nonnegative integers taken from
the domain D(fj) of field fj , and < decision > is either
accept or discard.

2124

A property whose decision is accept (or discard, respec-
tively) is called an accept property (or discard property,
respectively).

A packet (p1, .., pd) is said to match a property s of the
form:

s : f1 ∈ Y1 ∧ .. ∧ fd ∈ Yd →< decision >

iff the predicate (p1 ∈ Y1 ∧ .. ∧ pd ∈ Yd) is true.
Note that rules and properties have the same syntax and

semantics. Thus, we sometimes treat a rule in a firewall as if
it is a property and vice versa.

III. VERIFICATION OF FIREWALLS

A firewall F is said to satisfy a property s iff one of the
following two conditions holds.

1) s is an accept property and each packet that matches s
is accepted by F .

2) s is a discard property and each packet that matches s
is discarded by F .

A firewall verification algorithm is an algorithm that takes
as input any given firewall F and any given property s and
determines whether F satisfies s. Below, we show that any
firewall verification algorithm can also be used to determine
whether any given rule in any given firewall is redundant and
can (and should) be removed from the firewall.

Several firewall verification algorithms are given [1], [2],
[3], [4], and [5]. The time and space complexity of the
algorithms in [1], [2], and [3], when applied to a firewall F
and a property s, are both O(nd), where n is the number of
rules and d is the number fields in the given firewall F .

The time and space complexity of the algorithm in [4], when
applied to a firewall F and a property s, are both O(nd) where
n is the number of rules and d is the number of fields in
F . However, this algorithm is probabilistic, which means that
sometimes when the algorithm concludes that F satisfies s,
the conclusion is wrong. (On the other hand, every time the
algorithm concludes that F does not satisfy s, the conclusion
is correct.)

The most efficient firewall verification algorithm is the one
presented in [5]. The time complexity of this algorithm is
O(nd) and the space complexity is O(nd). This algorithm is
based on the concept of projection firewall, which is a firewall
that is constructed by combining any given firewall with any
given property.

But before we can present the construction algorithm for
projection firewalls (Algorithm 1 below), we need first to
introduce three new concepts:

• A rule overlapping a property
• The projection of a rule over a property
• A rule covering a property
Let r be a rule and s be a property of the following form:

r : f1 ∈ X1 ∧ .. ∧ fd ∈ Xd →< r.decision >

s : f1 ∈ Y1 ∧ .. ∧ fd ∈ Yd →< s.decision >

Rule r is said to overlap property s iff every intersection
of an interval Xj in r with the corresponding interval Yj in s
is nonempty.

If rule r overlaps property s, then define the projection of
r over s, denoted r/s , as the following rule:

r/s : f1 ∈ (X1 ∩ Y1)∧ ..∧ fd ∈ (Xd ∩ Yd)→< r.decision >

Rule r is said to cover property s iff every interval Xj in
r contains the corresponding interval Yj in s.

Algorithm 1 is the algorithm for constructing projection
firewalls.

Algorithm 1 Constructing Projection Firewalls
Input: a firewall F and a property s
Output: a firewall denoted F/s, called the projection of F

over s
F/s := an empty sequence of rules;
for each rule r in F do

if r overlaps s then
add the rule r/s at the tail of the sequence F/s

end if
if r covers s then

exit the for loop
end if

end for

Utilizing the concept of projection firewalls, the following
two theorems present necessary and sufficient conditions for a
firewall F to satisfy a property s. Theorem 1 applies if s is an
accept property whereas Theorem 2 applies if s is a discard
property. These two theorems are the basis upon which the
efficient firewall verification algorithm in [5] is established.

Theorem 1. A firewall F satisfies an accept property s iff the
projection firewall G/s discards no packet, where G is firewall
F after adding a full discard rule at the end.

�

Theorem 2. A firewall F satisfies a discard property s iff the
projection firewall G/s accepts no packet, where G is firewall
F after adding a full accept rule at the end.

�

In Section V below, we show that the verification algorithm
in [5], or any other firewall verification algorithm for that
matter, can also be used to detect redundant rules in any given
firewall.

IV. REDUNDANCY CHECKING IN FIREWALLS

Let F be a firewall and let r be a rule in F . Rule r is said
to be redundant in F iff the two firewalls F and F − r are
equivalent, where F − r is firewall F after removing rule r
from it. (Recall that, as mentioned above in Section II, two
firewalls are equivalent iff they accept, discard, and ignore the
same packets.)

2125

A firewall redundancy checking algorithm is an algorithm
that takes as input any firewall F and any rule r in F and
determines whether or not r is redundant in F .

Firewall redundancy checking algorithms are useful because
any firewall that has a large number of redundant rules is
inefficient to check, whenever a packet arrives at the firewall,
whether to accept or discard the packet.

The following theorem presents a necessary and sufficient
condition for determining whether a rule in a firewall is
redundant. This condition can then be employed in designing
a firewall redundancy checking algorithm.

Theorem 3. Let F be a firewall and r be a rule in F . Rule r
is redundant in F iff for every packet p that matches rule r,
at least one of the following two conditions holds:

1) Packet p matches one or more rules that precede r in
F .

2) Packet p matches one or more rules that follow rule r in
F , and the first such rule has the same decision, accept
or discard, as rule r.

�

Unfortunately, if the necessary and sufficient condition in
Theorem 3 is used in designing a firewall redundancy checking
algorithm, then the time complexity of this algorithm will be
proportional to the number of packets that match the checked
rule, which can be quite large. This makes the algorithm too
expensive to be practical.

Instead of this expensive algorithm, we seek in this paper
firewall redundancy checking algorithms whose time complex-
ity is a function of n and d only, where n is the number of
rules and d is the number of fields in the checked firewall.
Towards this end, we show, in Section V, that any firewall
verification algorithm can be also used to check redundant
rules in firewalls. Moreover, the time and space complexity of
the verification algorithm when used in detecting whether a
given rule is redundant in a give firewall are the same as the
time and space complexity of the same algorithm when used to
verify whether a given firewall satisfies a given property. Thus,
our efficient firewall verification algorithm in [5], whose time
complexity is O(nd) and whose space complexity is O(nd),
can be used, with the same complexity, to check redundant
rules in firewalls.

Similarly we show, in Section VI, that any firewall redun-
dancy checking algorithm can be also used, with the same
complexity, in verifying firewalls.

These results of Sections V and VI indicate that the two
problems of firewall verification and of firewall redundancy
checking are equivalent and any progress that one can achieve
in solving either problem can be also regarded as a progress
in solving the other problem.

V. USING VERIFICATION IN REDUNDANCY CHECKING

In this section, we show that any firewall verification
algorithm can be also used to detect redundant rules in fire-
walls. Specifically, we present an algorithm, named Algorithm

V −to−R, that takes as input any firewall F , any rule r in F ,
and any firewall verification algorithm V , and uses Algorithm
V to determine whether r is redundant in F . We also show that
that the time and space complexity of Algorithm V − to−R
are the same as the time and space complexity, respectively,
of Algorithm V .

Algorithm V − to−R is shown below as Algorithm 2.

Algorithm 2 V − to−R

Input: a firewall F ,
a rule r in F , and
a firewall verification algorithm V

Output: determination of whether r is redundant in F
let G denote firewall F after making the decision of each
rule, that precedes rule r in F , be the same as the decision
of rule r.
let G− r denote firewall G after removing rule r from it.
let (G − r)/r denote the projection of firewall (G − r)
over rule r. (Note that, in this case, rule r is viewed as a
property.)
call the input firewall verification algorithm V to verify
whether firewall (G − r)/r satisfies rule r. (Note that, in
this case, rule r is viewed as a property.)
if (G− r)/r satisfies r then

Report that r is redundant in F .
else

Report that r is not redundant in F .
end if

The next two theorems give the time and space complexity
of Algorithm V − to− R as functions of the time and space
complexity, respectively, of Algorithm V .

Theorem 4. Let V denote the firewall verification algorithm
employed in Algorithm V − to − R. Let TV (n, d) denote the
time complexity of Algorithm V when this algorithm is applied
to a firewall with n rules and d fields. Then the time complexity
of Algorithm V − to − R, denoted TV−to−R(n, d), can be
computed as follows:

TV−to−R(n, d) = TV (n− 1, d) +O(nd)

�

Theorem 5. Let V denote the firewall verification algorithm
employed in Algorithm V − to − R. Let SV (n, d) denote
the space complexity of Algorithm V when this algorithm is
applied to a firewall with n rules and d fields. Then the space
complexity of Algorithm V − to−R, denoted SV−to−R(n, d),
can be computed as follows:

SV−to−R(n, d) = SV (n− 1, d) +O(nd)

�

Because TV (n, d) is at least O(nd), we conclude from
Theorem 4 that the time complexity of Algorithm V − to−R
is the same as the time complexity of Algorithm V . Similarly,

2126

because SV (n, d) is at least O(nd), we conclude from Theo-
rem 5 that the space complexity of Algorithm V − to−R is
the same as the space complexity of Algorithm V .

VI. USING REDUNDANCY CHECKING IN VERIFICATION

In this section, we show that any firewall redundancy check-
ing algorithm can be also used to verify firewalls. Specifically,
we present an algorithm, named Algorithm R − to − V , that
takes as input any firewall F , any property r, and any firewall
redundancy checking algorithm R, and uses Algorithm R to
verify whether F satisfies r. We also show that that the time
and space complexity of Algorithm R− to− V are the same
as the time and space complexity, respectively, of Algorithm
R.

Algorithm R− to− V is shown below as Algorithm 3.

Algorithm 3 R− to− V

Input: a firewall F ,
a property r, and
a redundancy checking algorithm R

Output: determination of whether F satisfies r
let G denote the firewall that consists of property r, as the
first rule, followed by the sequence of rules in firewall F .
(Note that, in this case, property r is viewed as a rule.)
call the input redundancy checking algorithm R to check
whether the first rule in firewall G, namely rule r, is
redundant in G.
if r is redundant in G then

Report that F satisfies r.
else

Report that F does not satisfy r.
end if

The next two theorems give the time and space complexity
of Algorithm R − to− V as functions of the time and space
complexity, respectively, of Algorithm R.

Theorem 6. Let R denote the redundancy checking algorithm
employed in Algorithm R − to − V . Let TR(n, d) denote the
time complexity of Algorithm R when this algorithm is applied
to a firewall with n rules and d fields. Then the time complexity
of Algorithm R − to − V , denoted TR−to−V (n, d), can be
computed as follows:

TR−to−V (n, d) = TR(n+ 1, d) +O(nd)

�

Theorem 7. Let R denote the redundancy checking algorithm
employed in Algorithm R − to − V . Let SR(n, d) denote
the space complexity of Algorithm R when this algorithm is
applied to a firewall with n rules and d fields. Then the space
complexity of Algorithm R− to−V , denoted SR−to−V (n, d),
can be computed as follows:

SR−to−V (n, d) = SR(n+ 1, d) +O(nd)

�

Because TV (n, d) is at least O(nd), we conclude from
Theorem 6 that the time complexity of Algorithm R− to−V
is the same as the time complexity of Algorithm R. Similarly,
because SV (n, d) is at least O(nd), we conclude from Theo-
rem 7 that the space complexity of Algorithm R− to− V is
the same as the space complexity of Algorithm R.

VII. RELATED WORK

In this section, we provide a brief survey of the current
state of the art in firewall research. As firewalls are a critical
component of enterprise and government cyber security, they
have been extensively studied. The literature on firewalls
falls broadly into four major groups: firewall testing, firewall
analysis, firewall verification, and firewall design.

1) Firewall Testing:
To test a given firewall F , one generates many packets
for which the “expected” decisions of F , accept or
discard, are known a priori. The generated packets are
then sent to F , and the actual decisions of F for
these packets are observed. If the expected decision
for each generated packet is the same as the actual
decision for the packet, one concludes that the given
firewall F is correct. Otherwise, the given firewall F
has errors. Different methods of firewall testing differ in
how the testing packets are generated. For instance, the
test packets can be hand-generated by domain experts to
target specific vulnerabilities in the given firewall F , or
generated from the formal specifications of the security
policy of the given firewall F , as in [6]. A scheme for
targeting test packets for better fault coverage is given
in [7]. Al-Shaer et al. provide a complete framework to
generate targeted packets and obtain good coverage in
testing in [8].

2) Firewall Analysis:
To analyze a given firewall F , one applies an algorithm
to identify (some or all of the) vulnerabilities, conflicts,
anomalies, and redundancies in the given firewall F . A
systematic method for analyzing firewalls is presented in
[9]. The concept of conflicts between rules in a firewall
is due to [10] and [11]. A framework for understanding
the vulnerabilities in a single firewall is outlined in [12],
and an analysis of these vulnerabilities presented in [13].
[14] is a quantitative study of configuration errors for
a firewall. An example of an efficient firewall analysis
algorithm is given in FIREMAN [15].

3) Firewall Verification:
To verify a given firewall F against a given property R,
one applies an algorithm (similar to the one discussed in
this paper) to verify whether or not F satisfies R. The
question of how to query a given firewall and obtain the
answer (whether or not it satisfies a given property) is
discussed in [9] and [1]. These algorithms are proved
to be O(nd) in [16]. We present a new, O(nd)-space
algorithm in [5].

4) Firewall Design:
To ensure a firewall does not have vulnerabilities or

2127

other problems, it can be designed from the outset using
structured algorithms. Such algorithms, that can generate
a firewall from its specification, are provided in [2] and
[17]. We develop a new approach to the problem of
firewall design and demonstrate how to design a firewall
as a set of modules, in [18].

Our current paper demonstrates that one of the most studied
problems of firewall analysis, namely redundancy checking,
is equivalent to firewall verification. In fact, one can use a
redundancy checker to verify a firewall, and a verifier to detect
all redundant rules in the firewall. As we have developed a fast
engine for firewall verification [5], we will in future work use
the results presented in this paper to develop a fast redundancy
checker for firewalls.

VIII. CONCLUDING REMARKS

We have shown in this paper that the two problems of
firewall verification and firewall redundancy checking are
equivalent in the following sense. Any algorithm that can be
used to solve either problem can be also used to solve the
other problem in the same time and space complexity.

This result is interesting because the two problems of
firewall verification and firewall redundancy checking are
not equally important. Specifically, the problem of firewall
verification addresses the critical issue of firewall correctness.
And so this problem is more important to solve than the
problem of firewall redundancy checking which addresses the
less critical issue of firewall execution time.

The two problems of firewall verification and firewall redun-
dancy checking, defined in this paper, can be both generalized.
And we believe that the two resulting general problems are
also equivalent. First, the firewall verification problem can be
generalized to verifying whether a given firewall satisfies a
given property that consists of one or more rules (instead of
a single rule as defined in this paper) that have the same
decision. Second, the firewall redundancy checking problem
can be generalized to checking whether any given sequence
of consecutive rules, that have the same decision, in a given
firewall is redundant. We conjecture that these two problems
are equivalent.

Our equivalence result in this paper, concerning firewall
verification and firewall redundancy checking, is established
under the assumption that firewalls are stateless. Whether the
same result can be also established for stateful firewalls, for
example as specified in [19], remains an open problem that
merits further research.

REFERENCES

[1] A. X. Liu and M. G. Gouda, “Firewall policy queries,” IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), 2009.

[2] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer
Networks, vol. 51, pp. 1106–1120, 2007.

[3] E. Al-shaer, W. Marrero, A. El-atawy, and K. Elbadawi, “Network
configuration in a box: Towards end-to-end verification of network
reachability and security,” in In Proceedings of the IEEE International
Conference on Network Protocols (ICNP), 2009.

[4] H. B. Acharya and M. G. Gouda, “Linear-time verification of firewalls,”
in In Proceedings of the IEEE International Conference on Network
Protocols (ICNP), 2009, pp. 133 –140.

[5] ——, “Projection and division: Linear-space verification of firewalls,” in
In Proceedings of the 30th IEEE International Conference on Distributed
Computing Systems, 2010, pp. 736 – 743.

[6] J. Jürjens and G. Wimmel, “Specification-based testing of firewalls,”
in PSI ’02: Revised Papers from the 4th International Andrei Ershov
Memorial Conference on Perspectives of System Informatics. London,
UK: Springer-Verlag, 2001, pp. 308–316.

[7] A. El-Atawy, K. Ibrahim, H. Hamed, and E. S. Al-Shaer, “Policy
segmentation for intelligent firewall testing,” Secure Network Protocols,
2005. (NPSec). 1st IEEE ICNP Workshop on, pp. 67–72, Nov. 2005.

[8] E. S. Al-Shaer, A. El-Atawy, and T. Samak, “Automated pseudo-live
testing of firewall configuration enforcement.” IEEE Journal on Selected
Areas in Communications, vol. 27, no. 3, pp. 302–314, 2009.

[9] A. J. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis engine,”
in IEEE Symposium on Security and Privacy, 2000, pp. 177–187.

[10] D. Eppstein and S. Muthukrishnan, “Internet packet filter management
and rectangle geometry,” in SODA, 2001, pp. 827–835.

[11] H. Adiseshu, S. Suri, and G. M. Parulkar, “Detecting and resolving
packet filter conflicts,” in INFOCOM, 2000, pp. 1203–1212.

[12] M. Frantzen, F. Kerschbaum, E. E. Schultz, and S. Fahmy, “A framework
for understanding vulnerabilities in firewalls using a dataflow model of
firewall internals,” Computers & Security, vol. 20, no. 3, pp. 263–270,
2001.

[13] S. Kamara, S. Fahmy, E. E. Schultz, F. Kerschbaum, and M. Frantzen,
“Analysis of vulnerabilities in internet firewalls,” Computers & Security,
vol. 22, no. 3, pp. 214–232, 2003.

[14] A. Wool, “A quantitative study of firewall configuration errors,” IEEE
Computer, vol. 37, no. 6, pp. 62–67, 2004.

[15] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra,
“Fireman: A toolkit for firewall modeling and analysis,” Security and
Privacy, IEEE Symposium on, vol. 0, pp. 199–213, 2006.

[16] M. G. Gouda, A. X. Liu, and M. Jafry, “Verification of distributed fire-
walls,” in Proceedings of the IEEE Global Communications Conference
(GLOBECOM), 2008.

[17] A. X. Liu and M. G. Gouda, “Diverse firewall design,” IEEE Transaction
on Parallel and Distributed Systems, vol. 19, no. 9, pp. 1237–1251, 2008.

[18] H. B. Acharya, A. Joshi, and M. G. Gouda, “Firewall modules and mod-
ular firewalls,” in In Proceedings of the IEEE International Conference
on Network Protocols (ICNP), 2010.

[19] M. G. Gouda and A. X. Liu, “A model of stateful firewalls and its
properties,” in In Proceedings of the IEEE International Conference on
Dependable Systems and Networks, 2005, pp. 320–327.

[20] D. Hoffman and K. Yoo, “Blowtorch: a framework for firewall test au-
tomation,” in ASE ’05: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering. New York, NY, USA:
ACM, 2005, pp. 96–103.

2128

