
Policy Expressions and the Bottom-Up Design of

Computing Policies

Rezwana Reaz1, H. B. Acharya1, Ehab S. Elmallah2,
Jorge A. Cobb3, and Mohamed G. Gouda1

1 University of Texas at Austin, USA
2 University of Alberta, Canada

3 University of Texas at Dallas, USA
{rezwana,acharya,gouda}@cs.utexas.edu

elmallah@ualberta.ca,cobb@utdallas.edu

Abstract. A policy is a sequence of rules, where each rule consists of a
predicate and a decision, and where each decision is either “accept” or
“reject”. A policy P is said to accept (or reject, respectively) a request
iÆ the decision of the first rule in P , that matches the request is “accept”
(or “reject”, respectively). Examples of computing policies are firewalls,
routing policies and software-defined networks in the Internet, and access
control policies. In this paper, we present a generalization of policies
called policy expressions. A policy expression is specified using one or
more policies and the three operators: “not”, “and”, and “or”. We show
that policy expressions can be utilized to support bottom-up methods
for designing policies. We also show that each policy expression can be
represented by a set of special types of policies, called slices. Finally,
we present several algorithms that use the slice representation of given
policy expressions to verify whether the given policy expressions satisfy
logical properties such as adequacy, implication, and equivalence.

Keywords: Policies, Firewalls, Access Control, Routing Policies

1 Introduction

A computing policy is a filter that is placed at the entry point of some resource.
Each request to access the resource needs to be first examined against the policy
to determine whether to accept or reject the request. The decision of a policy to
accept or reject a request depends on two factors:

1. The values of some attributes that are specified in the request and
2. The sequence of rules in the policy that are specified by the policy designer.

Examples of computing policies are firewalls in the Internet, routing policies
and software-defined networks in the Internet, and access control policies [12].
Early methods for the logical analysis of computing policies have been reported
in [14], [7], and [6].



2 R. Reaz et al.

A rule in a policy consists of a predicate and a decision, which is either
“accept” or “reject”. To examine a request against a policy, the rules in the
policy are considered one by one until the first rule, whose predicate satisfies
the values of the attributes in the request, is identified. Then the decision of the
identified rule, whether “accept” or “reject”, is applied to the request.

Note that there are three sets of requests that are associated with each policy
P : (1) the set of requests that are accepted by P , (2) the set of requests that
are rejected by P , and (3) the set of requests that are ignored by P (i.e. neither
accepted nor rejected by P ). This third set is usually, but not always, empty.

Next, we present two policy examples P and Q and use these examples to
introduce the concept of “policy expressions”, the subject matter of the current
paper.

Let u and v be two attributes whose integer values are taken from the interval
[1, 9]. A policy P over these two attributes can be defined as follows:

°
(u 2 [1, 4]) ^ (v 2 [8, 9])

¢ ! reject
°
(u 2 [2, 4]) ^ (v 2 [7, 9])

¢ ! accept
°
(u 2 [1, 9]) ^ (v 2 [1, 9])

¢ ! reject

Policy P consists of three rules. The first rule states that each request (u, v),
where the value of u is an integer in the interval [1, 4] and where the value of v is
an integer in the interval [8, 9], is to be rejected. The second rule states that each
request (u, v), that does not match the first rule and where the value of u is an
integer in the interval [2, 4] and where the value of v is an integer in the interval
[7, 9], is to be accepted. The third rule states that each request (u, v) that does
not match the first two rules is to be rejected. Thus, the set of requests that are
accepted by policy P is {(2, 7), (3, 7), (4, 7)}. Notice that because the third rule
rejects all requests that do not match the first two rules, we conclude policy P
ignores no requests.

A second policy Q over attributes u and v can be defined as follows:
°
(u 2 [2, 3]) ^ (v 2 [7, 7])

¢ ! accept
°
(u 2 [2, 4]) ^ (v 2 [7, 8])

¢ ! accept
°
(u 2 [1, 9]) ^ (v 2 [1, 9])

¢ ! reject

The set of requests that are accepted by Q is {(2, 7), (3, 7), (4, 7), (2, 8), (3, 8), (4, 8)}
and all other requests are rejected.

Now assume that we need to use the two given policies P and Q to design a
policy expression (P or Q). This policy expression accepts every request that is
accepted by policy P or accepted by policy Q.

In this paper, we show that every policy expression that is specified using
one or more policies and the three operators “not”, “and”, and “or” can be
represented by a set {S1, S2, · · · , Sk} of a special class of policies called slices such
that the following condition holds. A request is accepted by a policy expression
iÆ this request is accepted by at least one slice in the set of slices that represents
the policy expression.



Policy Expressions and the Bottom-Up Design of Computing Policies 3

As an example, let P and Q refer to the two policies defined above. As dis-
cussed in Algorithm 4 below, the policy expression (P or Q) can be represented
by the set of three slices {S1, S2, S3}:

Slice S1 is defined as follows:
°
(u 2 [1, 4]) ^ (v 2 [8, 9])

¢ ! reject
°
(u 2 [2, 4]) ^ (v 2 [7, 9])

¢ ! accept

Slice S2 is defined as follows:
°
(u 2 [2, 3]) ^ (v 2 [7, 7])

¢ ! accept

Slice S3 is defined as follows:
°
(u 2 [2, 4]) ^ (v 2 [7, 8])

¢ ! accept

(Notice that, as discussed below, each slice is a policy that consists of zero
or more reject rules followed by exactly one accept rule.)

Similarly, as discussed below, the policy expression (P and Q) accepts any
request r iÆ both polices P and Q accept r. As discussed in Algorithm 3 below,
the policy expression (P and Q) can be represented by the set of two slices
{S4, S5}:

Slice S4 is defined as follows:
°
(u 2 [1, 4]) ^ (v 2 [8, 9])

¢ ! reject
°
(u 2 [2, 3]) ^ (v 2 [7, 7])

¢ ! accept

Slice S5 is defined as follows:
°
(u 2 [1, 4]) ^ (v 2 [8, 9])

¢ ! reject
°
(u 2 [2, 4]) ^ (v 2 [7, 8])

¢ ! accept

This paper suggests a novel bottom-up design method that can be followed
by a designer in designing a computing policy. This design method proceeds as
follows. First, the designer designs several simple elementary policies. Second,
the designer combines these elementary policies using the three operators “not”,
“and”, and “or” into a single policy expression PE. Finally, the designer uses
the algorithms in Section 5 below to verify that designed policy expression PE
satisfies desired adequacy, implication, and equivalence properties.

As an example, a designer can start by designing two policies P and Q, then
use these two policies to design the policy expression (P and not(Q)). This policy
expression accepts every request that is accepted by policy P and rejected by
policy Q. Then the designer can use Algorithm 8 in Section 5 below to prove
that this policy expression implies both policy P and policy not(Q).

The rest of this paper is organized as follows. In Section 2, we present our
formal definition of policies. Then in Section 3, we present our formal definition of
policy expressions and discuss three theorems that state fundamental properties



4 R. Reaz et al.

of policy expressions. In Section 4, we introduce the concept of a base of a
policy expression as a set of slices that satisfies the following condition. For
every request r, the policy expression accepts r iÆ at least one slice in the base
of the policy expression accepts r. Also in Section 4, we present algorithms for
constructing a base for every policy expression. In Section 5, we show that the
bases of given policy expressions can be used to determine whether the given
policy expressions satisfy some logical properties such as adequacy, implication,
and equivalence. Finally, we discuss related work in Section 6, and present our
concluding remarks in Section 7.

2 Preliminaries about Policies

In this section, we formally introduce the main concepts related to computing
policies. These concepts are: Intervals, Attributes, Requests, Predicates, Deci-
sions, Rules, Policies, and Complete Policies.

2.1 Intervals

An interval is a finite and nonempty set of consecutive integers. An interval X
can be denoted by a pair of integers [y, z], where y is the smallest integer in X,
and z is the largest integer in X. Note that an interval [y, y] has only one integer
y. Note also that any pair [y, z], where y > z, is not an interval.

2.2 Attributes

An attribute is a “variable” that has a “name” and a “value”. Throughout this
paper, we assume that there are t attributes whose names are u1, u2, . . . , and
ut. The value of each attribute ui is taken from an interval that is called the
domain of attribute ui and is denoted D(ui).

2.3 Requests

A request is a tuple (b1, . . . , bt) of t integers, where t is the number of attributes
and each integer bi is taken from the domain D(ui) of attribute ui. We adopt R
to denote the set of all requests. Notice that set R is finite.

2.4 Predicates

A predicate is of the form ((u1 2 X1) ^ · · · ^ (ut 2 Xt)), where each ui is
an attribute, each Xi is an interval that is contained in the domain D(ui) of
attribute ui, and ^ is the logical AND or conjunction operator.

The value of each conjunct (ui 2 Xi) in a predicate is true iÆ the value of
attribute ui is an integer in interval Xi.

The value of a predicate is true iÆ the value of every conjunct (ui 2 Xi) in
this predicate is true.



Policy Expressions and the Bottom-Up Design of Computing Policies 5

A predicate ((u1 2 X1)^ · · ·^ (ut 2 Xt)), where each interval Xi is the whole
domain of the corresponding attribute ui, is called the ALL predicate.

A request (b1, . . . , bt) is said to match a predicate ((u1 2 X1) ^ · · ·^ (ut 2
Xt)) iÆ each integer bi in the request is an element in the corresponding interval
Xi in the predicate.

2.5 Decisions

We assume that there are two distinct decisions: “accept” and “reject”. Hence-
forth, we write “accept” and “reject” with quotation marks to indicate the
“accept” and “reject” decisions, respectively. We also write accept and reject
without quotation marks to indicate the English words accept and reject, re-
spectively.

2.6 Rules

A rule (in a policy) is defined as a pair, one predicate and one decision, written
as follows:

hpredicatei ! hdecisioni

A rule whose decision is “accept” is called an accept rule, and a rule whose
decision is “reject” is called a reject rule. An accept rule whose predicate is the
ALL predicate is called an accept-ALL rule, and a reject rule whose predicate is
the ALL predicate is called the reject-ALL predicate.

A request is said to match a rule iÆ the request matches the predicate of the
rule. (Note that each request matches every ALL rule.)

2.7 Policies

A policy is a (possibly empty) sequence of rules. A policy P is said to accept (or
reject, respectively) a request rq iÆ P has an accept (or reject, respectively) rule
r such that request rq matches rule r and does not match any rule that precedes
rule r in policy P .

2.8 Complete Policies

A policy P is complete iÆ every request is either accepted by P or rejected by
P .

Let P be a policy. We adopt the notation not(P ) to denote the policy that
is obtained from policy P by (1) replacing each “accept” decision in P by a
“reject” decision in not(P ) and (2) replacing each “reject” decision in P by an
“accept” decision in not(P ).

Note that a policy P is complete iÆ the policy not(P ) is complete.



6 R. Reaz et al.

3 Definition of Policy Expressions

In this section, we present a generalization of policies called policy expressions.
Informally, a policy expression is specified using one or more policies and three
operators: “not”, “and”, and “or”. Each one of these operators can be applied
to one or two policy expressions to produce a policy expression.

Formally, a hpolicy expression PEi is defined recursively as one of the fol-
lowing four options:

A complete policy P
A complete policy not(P )
hpolicy expression PE1i and hpolicy expression PE2i
hpolicy expression PE1i or hpolicy expression PE2i

An example of a policy expression is as follows:
(P and not(Q)) or (not(P ) and Q)

In this example, P and Q are complete policies.
Associated with each policy expression PE is a request set RS defined as

follows:

– If PE is a complete policy P ,
then RS is the set of all requests accepted by P

– If PE is a complete policy not(P ),
then RS is the set of all requests accepted by not(P )

– If PE is a policy expression (PE1 and PE2),
then RS is the intersection of two request sets RS1 and RS2 where RS1 is
the request set associated with PE1 and RS2 is the request set associated
with PE2

– If PE is a policy expression (PE1 or PE2),
then RS is the union of two request sets RS1 and RS2 where RS1 is the
request set associated with PE1 and RS2 is the request set associated with
PE2

As an example, the request set associated with the policy expression (P and
not(Q)) is the intersection of the two request sets RS1 and RS2, where RS1 is
the set of all requests accepted by policy P and RS2 is the set of all requests
accepted by policy not(Q).

Two policy expressions PE1 and PE2 are said to be equivalent iÆ the two
request sets associated with PE1 and PE2 are identical.

For example, the policy expression (P and not(Q)) and the policy expression
(not(Q) and P ) are equivalent.

Let PE be a policy expression. We adopt the notation not(PE) to denote
the policy expression that is recursively obtained from PE as follows:

– If PE is a complete policy P ,
then not(PE) denotes the policy expression not(P )

– If PE is a complete policy not(P ),
then not(PE) denotes the policy expression P



Policy Expressions and the Bottom-Up Design of Computing Policies 7

– If PE is a policy expression (PE1 and PE2),
then not(PE) denotes the policy expression (not(PE1) or not(PE2))

– If PE is a policy expression (PE1 or PE2),
then not(PE) denotes the policy expression (not(PE1) and (PE2))

As an example, not
°
(P and not(Q)) or (not(P ) and Q)

¢
denotes the policy

expression
°
(not(P ) or Q) and (P or not(Q))

¢
.

The following three theorems state fundamental properties of policy expres-
sions.

Theorem 1. For every policy expression PE, (1) the request set associated with

the policy expression (PE and not(PE)) is the empty set, and (2) the request

set associated with the policy expression (PE or not(PE)) is the set R of all

requests.

Proof. We prove Part 1 of this theorem. (A proof of Part 2 is similar to our
proof of Part 1.) Our proof of Part 1 makes use of the following definition of the
“rank” of a policy expression PE.

The rank k of a policy expression PE is a non-negative integer defined re-
cursively as follows:

– If PE is a complete policy P or is a complete policy not(P ), then k = 0
– If PE is of the form (PE1 and PE2) or is of the form (PE1 or PE2),

then k = (1 + max(k1, k2)), where k1 is the rank of PE1 and k2 is the rank
of PE2

Our proof of Part1 is by induction on the rank k of the policy expression
PE. This induction proof consists of two parts: a base case and an induction
step.

Base Case: We prove that if the rank of PE is 0 then the request set
associated with (PE and not(PE)) is empty. Because the rank of PE is 0 then
PE is either of the form P or of the form not(P ). If PE is of the form P , then
we need to prove that the request set associated with (P and not(P )) is empty,
which is true for any policy P . If PE is of the form not(P ), then we need to
prove that the request set associated with

°
not(P ) and not(not(P ))

¢
is empty,

which is also true for any policy P .
Induction Step: We assume that for every PE of rank k or less, the request

set associated with (PE and not(PE)) is empty and the request set associated
with (PE or not(PE)) is the set R of all requests. We then use this assumption
(often called the Induction Hypothesis) to prove that for every PE of rank (k+1),
the request set associated with (PE and not(PE)) is empty.

Let PE be any policy expression of rank (k + 1). In this case, PE is either
of the form (PE1 and PE2) or of the form (PE1 or PE2), where the rank k1 of
PE1 is k or less and the rank k2 of PE2 is k or less. In the rest of this proof, we
focus on the case where PE is of the form (PE1 and PE2). (The proof for the
case where PE is of the form (PE1 or PE2) is similar.)



8 R. Reaz et al.

Let RS1 be the request set associated with PE1, and RS2 be the request set
associated with PE2. Thus, the request set associated with PE is the intersection
of the two sets RS1 and RS2.

The induction step proceeds as follows:

(1) From the induction hypothesis, the request set associated with (PE1 and
not(PE1)) is empty

(2) From the induction hypothesis, the request set associated with (PE1 or
not(PE1)) is the set R of all requests

(3) From (1) and (2), the request set associated with not(PE1) is (R°RS1)
(4) Applying steps (1), (2), and (3) to PE2, the request set associated with

not(PE2) is (R°RS2)
(5) From the fact that PE is (PE1 and PE2), not(PE) is

°
not(PE1) or not(PE2)

¢

(6) From (3), (4), and (5), the request set associated with not(PE) is
°
(R°RS1)S

(R°RS2)
¢

(7) From the fact that PE is (PE1 and PE2), the request set associated with
PE is (RS1

T
RS2)

(8) From (6) and (7), the request set associated with (PE and not(PE)) is°
(RS1

T
RS2)

T
((R°RS1)

S
(R°RS2))

¢

(9) From (8), the request set associated with (PE and not(PE)) is
°
(RS1

T
RS2)T

(R°(RS1
T

RS2))
¢

(10) From (9), the request set associated with (PE and not(PE)) is empty.

Theorem 2. For every policy expression PE, the request set associated with the

policy expression not(PE) is (R°RS), where R is the set of all requests, RS is

the request set associated with PE, and “°” is the set diÆerence operator.

Proof. Let NS denote the request set associated with not(PE). Thus, the re-
quest set associated with the policy expression (PE and not(PE)) is (RS

T
NS),

and the request set associated with the policy expression (PE or not(PE)) is
(RS

S
NS). Hence, from Theorem 1, the set (RS

T
NS) is empty and the set

(RS
S

NS) is the set R of all requests. Therefore, set NS is (R°RS).

A policy expression PE is said to be complete iÆ for every request r either
PE accepts r or PE rejects r.

Theorem 3. Every policy expression is complete.

Proof. Proof by contradiction: Assume that there is a policy expression PE that
is not complete. Thus, there is a request r such that PE neither accepts r nor
rejects r. Hence, from Theorem 2, request r is neither in the request set RS
associated with PE nor in the request set (R ° RS) associated with not(PE).
Therefore, request r is not in the union of the two sets RS and (R°RS), which
constitutes the set R of all requests. This contradicts the fact that r is a request
in the set R of all requests.



Policy Expressions and the Bottom-Up Design of Computing Policies 9

4 Bases of Policy Expressions

In this section, we introduce the concept of “a base of a policy expression PE”
as a set SS of slices that satisfies the following condition. For every request r,
the policy expression PE accepts r iÆ at least one slice in the base SS accepts
r. We start this section by introducing the concept of “a slice”.

A slice is a policy that consists of zero or more reject rules followed by exactly
one accept rule.

Let SS be a set of slices and let PE be a policy expression. Set SS is said
to be a base of the policy expression PE iÆ the following condition holds. Each
request that is accepted by at least one slice in set SS is in the request set
associated with the policy expression PE, and vice versa.

The following five algorithms can be applied to any policy expression PE to
construct a slice set SS that is a base of PE.

Algorithm 1
Input: A complete policy P
Output: A slice set SS that is a base of P
Steps: For each accept rule ar in P , construct a slice sl in SS as follows. All
the reject rules that precede rule ar in P are added to slice sl. Then rule ar is
added at the end of slice sl.
Time Complexity: The time complexity of Algorithm 1 is of O(n2) where n
is the number of rules in the input policy P .
End

Algorithm 2
Input: A complete policy not(P )
Output: A slice set SS that is a base of not(P )
Steps: For each accept rule ar in not(P ), construct a slice sl in SS as follows.
All the reject rules that precede rule ar in not(P ) are added to slice sl. Then
rule ar is added at the end of slice sl.
Time Complexity: The time complexity of Algorithm 2 is of O(n2) where n
is the number of rules in the input policy not(P ).
End

Algorithm 3
Input: A policy expression PE of the form (PE1 and PE2)

A slice set SS1 that is a base of PE1

A slice set SS2 that is a base of PE2

Output: A slice set SS that is a base of PE
Steps: For every slice sl1 in SS1 and every slice sl2 in SS2, construct a slice sl
in SS as follows:

1. The reject rules of slice sl is constructed by merging the reject rules of sl1
with the reject rules of sl2 in any order



10 R. Reaz et al.

2. The accept rule of slice sl is constructed by taking the intersection of the
predicates of the two accept rules of slices sl1 and sl2. If this intersection is
empty, then discard slice sl from the base SS of the policy expression PE.

Time Complexity: The time complexity of Algorithm 3 is of O((m1 £m2) £
(n1 +n2)) where m1 is the number of slices in SS1, m2 is the number of slices in
SS2, n1 is the number of rules in the largest slice in SS1, and n2 is the number
of rules in the largest slice in SS2.
End

Algorithm 4
Input: A policy expression PE of the form (PE1 or PE2)

A slice set SS1 that is a base of PE1

A slice set SS2 that is a base of PE2

Output: A slice set SS that is a base of PE
Steps: The slice set SS is constructed as the union of the two slice sets SS1 and
SS2.
Time Complexity: The time complexity of Algorithm 4 is of O((m1 £ n1) +
(m2£n2)) where m1 is the number of slices in SS1, m2 is the number of slices in
SS2, n1 is the number of rules in the largest slice in SS1, and n2 is the number
of rules in the largest slice in SS2.
End

Algorithm 5
Input: A policy expression PE
Output: A slice set SS that is a base of PE
Steps: SS is constructed by recursively applying the following four steps:

1. If PE is a complete policy P then use Algorithm 1 to construct SS as a base
of P

2. If PE is a complete policy not(P ) then use Algorithm 2 to construct SS as
a base of not(P )

3. If PE is (PE1 and PE2) and SS1 is a base of PE1 and SS2 is a base of
PE2 then use Algorithm 3 to construct SS as a base of PE from the two
slice sets SS1 and SS2

4. If PE is (PE1 or PE2) and SS1 is a base of PE1 and SS2 is a base of PE2

then use Algorithm 4 to construct SS as a base of policy expression PE
from the two slice sets SS1 and SS2

Time Complexity: The time complexity of Algorithm 5 depends on the number
and type of operators in the input policy expression PE.
End

5 Analysis of Policy Expressions

In this section, we discuss several properties of policy expressions (namely ad-
equacy, implication, and equivalence) and present algorithms that can be used



Policy Expressions and the Bottom-Up Design of Computing Policies 11

to determine whether any given policy expressions satisfy these properties.

Algorithm 6
Input: A policy expression PE and a request r
Output: A determination of whether PE accepts r
Steps: Construct a base SS of the policy expression PE using Algorithm 5. If
any of the slices in the base SS accepts request r, then PE accepts r. Otherwise,
PE does not accept request r.
Time Complexity: Let T denote the time complexity of Algorithm 5 when
applied to the input policy expression to construct its base SS. Also let m be
the number of slices in SS and let n be the number of rules in the largest slice
SS. Therefore, the time complexity of Algorithm 6 is of O(T + (m£ n)).
End

A policy expression PE is said to be adequate iÆ PE accepts at least one
request. The following algorithm can be used to determine whether any given
policy expression is adequate.

Algorithm 7
Input: A policy expression PE
Output: A determination of whether PE accepts a request.
Steps: Construct a base SS of the policy expression PE using Algorithm 5.
For each slice in the constructed base SS, determine whether this slice accepts
a request using the PSP method described in [2] and [13]. If one or more slices
in SS accepts a request, then PE accepts a request. Otherwise, PE does not
accept any request.
Time Complexity: Let T denote the time complexity of Algorithm 5 when
applied to the input policy expression to construct its base SS. Also let m be
the number of slices in the constructed base SS and n be the number of rules
in the largest slice in SS. As discussed in [2] and [13], the time complexity of
using the PSP method to determine whether a slice of n rules and t attributes
accepts a request is of O(nt). Therefore, the time complexity of Algorithm 7 is
of O(T + (m £ (nt))).
End

A policy expression PE1 is said to imply a policy expression PE2 iÆ the
request set associated with the policy expression (PE1 and not(PE2)) is empty.

Theorem 4. PE1 implies PE2 iÆ the request set RS1 associated with PE1 is

a subset of the request set RS2 associated with PE2.

Proof. Proof of the If-Part: Assume that PE1 implies PE2. Thus, the request
set associated with the policy expression (PE1 and not(PE2)) is empty. From
Theorem 2, the request set associated with not(PE2) is the set (R°RS2), where
R is the set of all requests. Therefore, the set

°
RS1

T
(R°RS2)

¢
is empty and

RS1 is a subset of RS2.



12 R. Reaz et al.

Proof of the Only-If-Part: Assume that the request set RS1 associated with
PE1 is a subset of the request set RS2 associated with PE2. Thus, the set

°
RS1T

(R ° RS2)
¢
, where R is the set of all requests, is empty. From Theorem 2,

the request set associated with not(PE2) is the set (R ° RS2). Therefore, the
request set associated with the policy expression (PE1 and not(PE2)) is empty
and PE1 implies PE2.

Algorithm 8
Input: Two policy expressions PE1 and PE2

Output: A determination of whether PE1 implies PE2

Steps: First, construct a policy expression PE from the policy expression (PE1

and not(PE2)) by pushing the “not” (which is applied to PE2) deeper into PE2

until every “not” is applied to a policy. Second, use Algorithm 7 to determine
whether the constructed policy expression PE accepts a request. From the defi-
nition of “implies”, if PE accepts no request then PE1 implies PE2. Otherwise,
PE1 does not imply PE2.
Time Complexity: The time complexity of Algorithm 8 is of O(T + (m £
(nt))), where T is the time complexity for constructing the policy expression
PE and its base SS, m is the number of slices in the constructed base SS, n is
number of rules in the largest slice in SS, and t is the number of attributes in
each slice in SS.
End

Theorem 5. Two policy expressions PE1 and PE2 are equivalent iÆ PE1 im-

plies PE2 and PE2 implies PE1.

Proof. Proof of the If-Part: Assume that PE1 and PE2 are equivalent. Thus,
the request set RS1 associated with PE1 and the request set RS2 associated
with PE2 are identical. Therefore, RS1 is a subset of RS2 and RS2 is a subset
of RS1. From Theorem 2, PE1 implies PE2 and PE2 implies PE1.

Proof of the Only-If-Part: Assume that PE1 implies PE2 and PE2 implies
PE1. Thus, from Theorem 2, RS1 is a subset of RS2 and RS2 is a subset of
RS1. Therefore, the request set RS1 associated with PE1 and the request set
RS2 associated with PE2 are identical and the two policy expressions PE1 and
PE2 are equivalent.

Algorithm 9
Input: Two policy expressions PE1 and PE2

Output: A determination of whether PE1 and PE2 are equivalent
Steps: Use Algorithm 8 twice to determine: (1) whether PE1 implies PE2 and
(2) whether PE2 implies PE1. From Theorem 5, if PE1 implies PE2 and PE2

implies PE1, then PE1 and PE2 are equivalent. Otherwise, also from Theorem
5, PE1 and PE2 are not equivalent.
Time Complexity: The time complexity of Algorithm 9 is twice the time com-
plexity of Algorithm 8.
End



Policy Expressions and the Bottom-Up Design of Computing Policies 13

6 Related Work

As mentioned earlier, this paper suggests the following bottom-up design method
that can be followed by a designer in designing a desired computing policy. First,
the designer designs several simple elementary policies. Second, the designer
combines these elementary policies using the three operators “not”, “and”, and
“or” into a single policy expression PE that specifies the desired policy. Third,
the designer uses Algorithm 5 to construct a base for the policy expression PE.
Fourth, the designer uses the constructed base and Algorithms 7, 8, and 9 to
verify that the policy expression PE satisfies desired adequacy, implication, and
equivalence properties.

Other methods that can be used in designing policies are reported in [5], [11],
[3], and [13]. These design methods, along with the bottom-up in the current
paper can constitute a library of policy design methods. When designing a policy,
it is up to the designer to decide which design method in this library will the
designer follow to generate the desired policy.

The method for designing policies in [5] consists of two steps. In the first step,
the designer designs the desired policy using a large conflict-free decision diagram
instead of a compact sequence of often conflicting rules. In the second step, the
designer uses several algorithms to convert the large decision diagram into a
compact, yet functionally equivalent, sequence of rules. This design method can
be referred to as “simplifying policies by introducing conflicts”.

The method for designing policies in [11] consists of three steps. In the first
step, the same specification of the desired policy is given to multiple teams
who proceed independently to design diÆerent versions of the policy. In the
second step, the resulting multiple versions of the policy are compared with one
another to detect all functional discrepancies between them. In the third step,
all discrepancies between the multiple policy versions are resolved, and a final
policy that is agreed upon by all teams is generated. This design method can be
referred to as “diverse policy design”.

The method for designing policies in [3] consists of three steps. In the first
step, the set of all expected requests is partitioned into non-overlapping subsets
S1, S2, · · · , Sk. In the second step, for each subset Si (obtained in the first step),
design a policy Pi that accepts some of the requests in the subset Si. In the third
step, identify policies P1, P2, · · · , Pk generated in the second step as the desired
policy. This design methods can be referred to as “divide-and-conquer”.

The method for designing policies in [13] consists of k steps. In the first step,
the designer starts with a simple policy P1 that accepts more requests than the
designer wishes. In the second step, the designer designs a second policy P2 such
that if any request is accepted by P2 then the same request is also accepted by
P1. (In other words, P2 implies P1.) This process is repeated k times until the
designer reaches a policy Pk that accepts those requests and only those requests
that the designer wishes to be accepted. This design method can be referred to
as “step-wise refinement”.



14 R. Reaz et al.

7 Concluding Remarks

The main contribution in this paper is to present a generalization of policies
called policy expressions. Each policy expression is specified using one or more
policies and the three operators “not”, “and”, and “or”. We showed that each
policy expression can be represented by a set of slices called a base of the policy
expression. We also showed that the bases of given policy expressions can be
used to determine whether the given policy expressions satisfy some desired
properties of adequacy, implication, and equivalence. Finally, we showed that
policy expressions can be utilized to support bottom-up methods for designing
policies.

The authors in [10, 9] investigated a novel representation of policies as finite
automata rather than as sequences of rules. They show later in [8], how to use the
automata representation of a given policy to determine whether the given policy
satisfies some desired properties of adequacy, implication, and equivalence. The
question of whether a policy expression can be represented as a finite automaton
rather than as a set of slices remains open.

It has been shown in [4] that the problems of determining whether given
policies satisfy some desired properties of adequacy, implication, and equivalence
are all NP-hard. From this fact and the fact that each (complete) policy is
also a policy expression, it follows that the problems of determining whether
given policy expressions satisfy some desired properties of adequacy, implication,
and equivalence are also NP-hard. Indeed, the time complexities of Algorithms
7, 8, and 9 that can be used to determine whether given policy expressions
satisfy some desired properties of adequacy, implication, and equivalence are all
exponential.

There are two main approaches to face the NP-hardness of determining
whether given policy expressions satisfy some desired properties of adequacy,
implication, and equivalence. The first approach is to use SAT solvers, for ex-
ample as discussed in [15], to determine whether given policy expressions satisfy
some desired properties of adequacy, implication, and equivalence. Note that the
time complexity of using SAT solvers is polynomial in most practical situations.

The second approach is to use probabilistic algorithms, for example as dis-
cussed in [1], to determine whether given policy expressions satisfy some desired
properties of adequacy, implication, and equivalence. Note that the time com-
plexities of probabilistic algorithms are always polynomial but unfortunately
these algorithms can yield wrong determinations in very rare cases.

References

1. Acharya, H.B., Gouda, M.G.: Linear-time verification of firewalls. In: Proceedings
of the 17th IEEE International Conference on Network Protocols (ICNP). pp.
133–140. IEEE (2009)

2. Acharya, H.B., Gouda, M.G.: Projection and division: Linear-space verification of
firewalls. In: Proceedings of the 30th IEEE International Conference on Distributed
Computing Systems (ICDCS). pp. 736–743. IEEE (2010)



Policy Expressions and the Bottom-Up Design of Computing Policies 15

3. Acharya, H.B., Joshi, A., Gouda, M.G.: Firewall modules and modular firewalls.
In: Proceedings of the 18th IEEE International Conference on Network Protocols
(ICNP). pp. 174–182. IEEE (2010)

4. Elmallah, E.S., Gouda, M.G.: Hardness of firewall analysis. In: Proccedings of the
2nd International Conference on NETworked sYStems (NETYS), Lecture Notes
in Computer Science, vol. 8593, pp. 153–168. Springer (2014)

5. Gouda, M.G., Liu, A.X.: Structured firewall design. Computer Networks 51(4),
1106–1120 (2007)

6. HoÆman, D., Yoo, K.: Blowtorch: a framework for firewall test automation. In: Pro-
ceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE). pp. 96–103. ACM (2005)

7. Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., Frantzen, M.: Analysis of
vulnerabilities in internet firewalls. Computers & Security 22(3), 214–232 (2003)

8. Khoumsi, A., Erradi, M., Ayache, M., Krombi, W.: An approach to resolve np-
hard problems of firewalls. In: Proceedings of the 4th International Conference on
NETworked sYStems (NETYS). Springer (2016)

9. Khoumsi, A., Krombi, W., Erradi, M.: A formal approach to verify completeness
and detect anomalies in firewall security policies. In: Proceedings of the 7th Interna-
tional Symposium on Foundations and Practice of Security. pp. 221–236. Springer
(2014)

10. Krombi, W., Erradi, M., Khoumsi, A.: Automata-based approach to design and
analyze security policies. In: Proceedings of the 12th Annual International Confer-
ence on Privacy, Security and Trust (PST). pp. 306–313. IEEE (2014)

11. Liu, A.X., Gouda, M.G.: Diverse firewall design. IEEE Transactions on Parallel
and Distributed Systems (TPDS) 19(9), 1237–1251 (2008)

12. Mayer, A., Wool, A., Ziskind, E.: Fang: A firewall analysis engine. In: Proceedings
of IEEE Symposium on Security and Privacy. pp. 177–187. IEEE (2000)

13. Reaz, R., Ali, M., Gouda, M.G., Heule, M.J., Elmallah, E.S.: The implication prob-
lem of computing policies. In: Proceedings of the 17th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, pp. 109–123. Springer
(2015)

14. Wool, A.: A quantitative study of firewall configuration errors. Computer 37(6),
62–67 (2004)

15. Zhang, S., Mahmoud, A., Malik, S., Narain, S.: Verification and synthesis of fire-
walls using SAT and QBF. In: Proceedings of the 20th IEEE International Con-
ference on Network Protocols (ICNP). pp. 1–6. IEEE (2012)


